These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 31717501)
1. Catalytic Hydrolysis Mechanism of Cocaine by Human Carboxylesterase 1: An Orthoester Intermediate Slows Down the Reaction. Yan M; Zhang Z; Liu Z; Zhang C; Zhang J; Fan S; Yang Z Molecules; 2019 Nov; 24(22):. PubMed ID: 31717501 [TBL] [Abstract][Full Text] [Related]
2. Catalytic Reaction Mechanism for Drug Metabolism in Human Carboxylesterase-1: Cocaine Hydrolysis Pathway. Yao J; Chen X; Zheng F; Zhan CG Mol Pharm; 2018 Sep; 15(9):3871-3880. PubMed ID: 30095924 [TBL] [Abstract][Full Text] [Related]
3. Fundamental reaction mechanism and free energy profile for (-)-cocaine hydrolysis catalyzed by cocaine esterase. Liu J; Hamza A; Zhan CG J Am Chem Soc; 2009 Aug; 131(33):11964-75. PubMed ID: 19642701 [TBL] [Abstract][Full Text] [Related]
4. Contribution of human esterases to the metabolism of selected drugs of abuse. Meyer MR; Schütz A; Maurer HH Toxicol Lett; 2015 Jan; 232(1):159-66. PubMed ID: 25445008 [TBL] [Abstract][Full Text] [Related]
5. Investigation binding patterns of human carboxylesterase I (hCES I) with broad substrates by MD simulations. Chu H; Min H; Zhang M; Shen H; Li G Curr Top Med Chem; 2013; 13(10):1222-33. PubMed ID: 23647544 [TBL] [Abstract][Full Text] [Related]
6. Reaction mechanism for cocaine esterase-catalyzed hydrolyses of (+)- and (-)-cocaine: unexpected common rate-determining step. Liu J; Zhao X; Yang W; Zhan CG J Phys Chem B; 2011 May; 115(17):5017-25. PubMed ID: 21486046 [TBL] [Abstract][Full Text] [Related]
7. [Molecular mechanism of chromogenic substrate hydrolysis in the active site of human carboxylesterase-1]. Kulakova AM; Khrenova MG; Nemukhin AV Biomed Khim; 2021 May; 67(3):300-305. PubMed ID: 34142538 [TBL] [Abstract][Full Text] [Related]
8. Discovery of a novel homocysteine thiolactone hydrolase and the catalytic activity of its natural variants. Hou S; Liu H; Hu Y; Zhang J; Deng X; Li Z; Zhang Y; Li X; Li Y; Ma L; Yao J; Chen X Protein Sci; 2024 Aug; 33(8):e5098. PubMed ID: 38980003 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the chiral recognition ability of human carboxylesterase 1 using indomethacin esters. Takahashi M; Takani D; Haba M; Hosokawa M Chirality; 2020 Jan; 32(1):73-80. PubMed ID: 31693270 [TBL] [Abstract][Full Text] [Related]
10. In silico prediction of human carboxylesterase-1 (hCES1) metabolism combining docking analyses and MD simulations. Vistoli G; Pedretti A; Mazzolari A; Testa B Bioorg Med Chem; 2010 Jan; 18(1):320-9. PubMed ID: 19932971 [TBL] [Abstract][Full Text] [Related]
11. hCES1 and hCES2 mediated activation of epalrestat-antioxidant mutual prodrugs: Unwinding the hydrolytic mechanism using in silico approaches. Choudhary S; Silakari O J Mol Graph Model; 2019 Sep; 91():148-163. PubMed ID: 31252365 [TBL] [Abstract][Full Text] [Related]
12. Chemical synthesis of an indomethacin ester prodrug and its metabolic activation by human carboxylesterase 1. Takahashi M; Ogawa T; Kashiwagi H; Fukushima F; Yoshitsugu M; Haba M; Hosokawa M Bioorg Med Chem Lett; 2018 Apr; 28(6):997-1000. PubMed ID: 29503023 [TBL] [Abstract][Full Text] [Related]
13. Fundamental reaction mechanism for cocaine hydrolysis in human butyrylcholinesterase. Zhan CG; Zheng F; Landry DW J Am Chem Soc; 2003 Mar; 125(9):2462-74. PubMed ID: 12603134 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the Structure and Activity of Glycosylated and Aglycosylated Human Carboxylesterase 1. Arena de Souza V; Scott DJ; Nettleship JE; Rahman N; Charlton MH; Walsh MA; Owens RJ PLoS One; 2015; 10(12):e0143919. PubMed ID: 26657071 [TBL] [Abstract][Full Text] [Related]
15. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase. Gao D; Zhan CG Proteins; 2006 Jan; 62(1):99-110. PubMed ID: 16288482 [TBL] [Abstract][Full Text] [Related]
16. Identification of selected therapeutic agents as inhibitors of carboxylesterase 1: potential sources of metabolic drug interactions. Zhu HJ; Appel DI; Peterson YK; Wang Z; Markowitz JS Toxicology; 2010 Apr; 270(2-3):59-65. PubMed ID: 20097249 [TBL] [Abstract][Full Text] [Related]
17. Biochemical characterization and structural analysis of a highly proficient cocaine esterase. Turner JM; Larsen NA; Basran A; Barbas CF; Bruce NC; Wilson IA; Lerner RA Biochemistry; 2002 Oct; 41(41):12297-307. PubMed ID: 12369817 [TBL] [Abstract][Full Text] [Related]
18. In vitro hydrolysis and transesterification of CDP323, an α4β1/α4β7 integrin antagonist ester prodrug. Chanteux H; Rosa M; Delatour C; Prakash C; Smith S; Nicolas JM Drug Metab Dispos; 2014 Jan; 42(1):153-61. PubMed ID: 24179032 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of cocaine and heroin is catalyzed by the same human liver carboxylesterases. Kamendulis LM; Brzezinski MR; Pindel EV; Bosron WF; Dean RA J Pharmacol Exp Ther; 1996 Nov; 279(2):713-7. PubMed ID: 8930175 [TBL] [Abstract][Full Text] [Related]
20. Reaction Pathway for Cocaine Hydrolase-Catalyzed Hydrolysis of (+)-Cocaine. Yao Y; Liu J; Zheng F; Zhan CG Theor Chem Acc; 2016 Jan; 135(1):. PubMed ID: 28250715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]