BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 31717503)

  • 1. Physiological and Transcriptional Responses of Industrial Rapeseed (
    Wang J; Jiao J; Zhou M; Jin Z; Yu Y; Liang M
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717503
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome Profile Analysis of Winter Rapeseed (
    Pu Y; Liu L; Wu J; Zhao Y; Bai J; Ma L; Yue J; Jin J; Niu Z; Fang Y; Sun W
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31195741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melatonin-Induced Transcriptome Variation of Rapeseed Seedlings under Salt Stress.
    Tan X; Long W; Zeng L; Ding X; Cheng Y; Zhang X; Zou X
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31661818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.
    Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T
    Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.).
    Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed (Brassica napus L.).
    Du C; Hu K; Xian S; Liu C; Fan J; Tu J; Fu T
    Mol Genet Genomics; 2016 Jun; 291(3):1053-67. PubMed ID: 26728151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple NUCLEAR FACTOR Y transcription factors respond to abiotic stress in Brassica napus L.
    Xu L; Lin Z; Tao Q; Liang M; Zhao G; Yin X; Fu R
    PLoS One; 2014; 9(10):e111354. PubMed ID: 25356551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of Cross-Talk and Specificity of Early Response Mechanisms to Salt and PEG-Simulated Drought Stresses in Brassica napus Using Comparative Proteomic Analysis.
    Luo J; Tang S; Peng X; Yan X; Zeng X; Li J; Li X; Wu G
    PLoS One; 2015; 10(10):e0138974. PubMed ID: 26448643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic basis for drought-resistance in Brassica napus L.
    Wang P; Yang C; Chen H; Song C; Zhang X; Wang D
    Sci Rep; 2017 Jan; 7():40532. PubMed ID: 28091614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors under Multiple Stresses in Brassica napus.
    He Y; Mao S; Gao Y; Zhu L; Wu D; Cui Y; Li J; Qian W
    PLoS One; 2016; 11(6):e0157558. PubMed ID: 27322342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide analysis and functional characterization of the DELLA gene family associated with stress tolerance in B. napus.
    Sarwar R; Jiang T; Ding P; Gao Y; Tan X; Zhu K
    BMC Plant Biol; 2021 Jun; 21(1):286. PubMed ID: 34157966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined Transcriptomics and Metabolomics Analysis Reveals the Molecular Mechanism of Salt Tolerance of Huayouza 62, an Elite Cultivar in Rapeseed (
    Wan H; Qian J; Zhang H; Lu H; Li O; Li R; Yu Y; Wen J; Zhao L; Yi B; Fu T; Shen J
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drought stress has transgenerational effects on seeds and seedlings in winter oilseed rape (Brassica napus L.).
    Hatzig SV; Nuppenau JN; Snowdon RJ; Schießl SV
    BMC Plant Biol; 2018 Nov; 18(1):297. PubMed ID: 30470194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in
    Xiong JL; Ma N
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalase (CAT) Gene Family in Rapeseed (
    Raza A; Su W; Gao A; Mehmood SS; Hussain MA; Nie W; Lv Y; Zou X; Zhang X
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33924156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress.
    Kubala S; Wojtyla Ł; Quinet M; Lechowska K; Lutts S; Garnczarska M
    J Plant Physiol; 2015 Jul; 183():1-12. PubMed ID: 26070063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global gene expression responses to waterlogging in leaves of rape seedlings.
    Lee YH; Kim KS; Jang YS; Hwang JH; Lee DH; Choi IH
    Plant Cell Rep; 2014 Feb; 33(2):289-99. PubMed ID: 24384821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome Analysis Reveals Roles of Anthocyanin- and Jasmonic Acid-Biosynthetic Pathways in Rapeseed in Response to High Light Stress.
    Luo Y; Teng S; Yin H; Zhang S; Tuo X; Tran LP
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884828
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative transcriptome profiling of two Brassica napus cultivars under chromium toxicity and its alleviation by reduced glutathione.
    Gill RA; Ali B; Cui P; Shen E; Farooq MA; Islam F; Ali S; Mao B; Zhou W
    BMC Genomics; 2016 Nov; 17(1):885. PubMed ID: 27821044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.