These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31717512)

  • 1. Integrated Process for Bioenergy Production and Water Recycling in the Dairy Industry: Selection of
    Leandro MJ; Marques S; Ribeiro B; Santos H; Fonseca C
    Microorganisms; 2019 Nov; 7(11):. PubMed ID: 31717512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater.
    Luo J; Ding L; Qi B; Jaffrin MY; Wan Y
    Bioresour Technol; 2011 Aug; 102(16):7437-42. PubMed ID: 21624829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A biorefinery concept for the production of fuel ethanol, probiotic yeast, and whey protein from a by-product of the cheese industry.
    Pendón MD; Madeira JV; Romanin DE; Rumbo M; Gombert AK; Garrote GL
    Appl Microbiol Biotechnol; 2021 May; 105(9):3859-3871. PubMed ID: 33860834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus.
    Zoppellari F; Bardi L
    N Biotechnol; 2013 Sep; 30(6):607-13. PubMed ID: 23201075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cheese whey permeate fermentation by
    Sampaio FC; de Faria JT; da Silva MF; de Souza Oliveira RP; Converti A
    Environ Technol; 2020 Oct; 41(24):3210-3218. PubMed ID: 30955482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering endogenous fermentative routes in ethanologenic Escherichia coli W for bioethanol production from concentrated whey permeate.
    Pasotti L; De Marchi D; Casanova M; Massaiu I; Bellato M; Cusella De Angelis MG; Calvio C; Magni P
    N Biotechnol; 2020 Jul; 57():55-66. PubMed ID: 32247835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli.
    Pasotti L; Zucca S; Casanova M; Micoli G; Cusella De Angelis MG; Magni P
    BMC Biotechnol; 2017 Jun; 17(1):48. PubMed ID: 28577554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fed-batch fermentation for production of Kluyveromyces marxianus FII 510700 cultivated on a lactose-based medium.
    Lukondeh T; Ashbolt NJ; Rogers PL
    J Ind Microbiol Biotechnol; 2005 Jul; 32(7):284-8. PubMed ID: 15959728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Membrane Technologies in Dairy Industry: An Overview.
    Reig M; Vecino X; Cortina JL
    Foods; 2021 Nov; 10(11):. PubMed ID: 34829049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of yeast immobilized-cell fluidized-bed bioreactors systems in ethanol fermentation from lactose-hydrolyzed whey and whey permeate.
    Gabardo S; Pereira GF; Klein MP; Rech R; Hertz PF; Ayub MA
    Bioprocess Biosyst Eng; 2016 Jan; 39(1):141-50. PubMed ID: 26527573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of nanofiltration and reverse osmosis potentialities to recover metals, sulfuric acid, and recycled water from acid gold mining effluent.
    Ricci BC; Ferreira CD; Marques LS; Martins SS; Amaral MC
    Water Sci Technol; 2016; 74(2):367-74. PubMed ID: 27438241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling.
    Chen TK; Ni CH; Chan YC; Lu MC
    Water Sci Technol; 2005; 51(6-7):411-9. PubMed ID: 16004003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alcohol production from cheese whey permeate using genetically modified flocculent yeast cells.
    Domingues L; Lima N; Teixeira JA
    Biotechnol Bioeng; 2001 Mar; 72(5):507-14. PubMed ID: 11460240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes.
    Diniz RH; Silveira WB; Fietto LG; Passos FM
    Antonie Van Leeuwenhoek; 2012 Mar; 101(3):541-50. PubMed ID: 22068918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological growth and galactose utilization by dairy yeast
    Beniwal A; Saini P; Kokkiligadda A; Vij S
    3 Biotech; 2017 Oct; 7(5):349. PubMed ID: 28955646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The production of ethanol from lignocellulosic biomass by Kluyveromyces marxianus CICC 1727-5 and Spathaspora passalidarum ATCC MYA-4345.
    Du C; Li Y; Zhao X; Pei X; Yuan W; Bai F; Jiang Y
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2845-2855. PubMed ID: 30706114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feed substrates influence biofilm formation on reverse osmosis membranes and their cleaning efficiency.
    Marka S; Anand S
    J Dairy Sci; 2018 Jan; 101(1):84-95. PubMed ID: 29103718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Selection of thermophilic lactose-fermenting yeast strains].
    Ianeva OD; Sichkar' SV; Voronina AA; Podgorskiĭ VS
    Mikrobiol Z; 2012; 74(6):65-70. PubMed ID: 23293829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous saccharification and fermentation of Agave tequilana fructans by Kluyveromyces marxianus yeasts for bioethanol and tequila production.
    Flores JA; Gschaedler A; Amaya-Delgado L; Herrera-López EJ; Arellano M; Arrizon J
    Bioresour Technol; 2013 Oct; 146():267-273. PubMed ID: 23941710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.