These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31717515)

  • 1. Time-Temperature-Plasticization Superposition Principle: Predicting Creep of a Plasticized Epoxy.
    Krauklis AE; Akulichev AG; Gagani AI; Echtermeyer AT
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31717515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time-Temperature Superposition Principle.
    Yang TC; Chien YC; Wu TL; Hung KC; Wu JH
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization.
    Motta Dias MH; Jansen KMB; Luinge JW; Bersee HEN; Benedictus R
    Mech Time Depend Mater; 2016; 20(2):245-262. PubMed ID: 30197569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creep behavior of bagasse fiber reinforced polymer composites.
    Xu Y; Wu Q; Lei Y; Yao F
    Bioresour Technol; 2010 May; 101(9):3280-6. PubMed ID: 20064712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain rate and temperature dependence of the mechanical properties of polymers: A universal time-temperature superposition principle.
    Tao W; Shen J; Chen Y; Liu J; Gao Y; Wu Y; Zhang L; Tsige M
    J Chem Phys; 2018 Jul; 149(4):044105. PubMed ID: 30068199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-Based Resin Reinforced with Flax Fiber as Thermorheologically Complex Materials.
    Amiri A; Yu A; Webster D; Ulven C
    Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uniaxial Tensile Creep Behavior of Epoxy-Based Polymer Using Molecular Simulation.
    Li X; Zhang X; Chen J; Huang L; Lv Y
    Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33466748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and Characterisation of Wood Polymer Composites Using Sustainable Raw Materials.
    Nukala SG; Kong I; Kakarla AB; Tshai KY; Kong W
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure of Glass Fiber Reinforced Polymer Composites in Seawater and the Effect on Their Physical Performance.
    Cavasin M; Sangermano M; Thomson B; Giannis S
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30857207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-Frequency-Dependent Viscoelastic Properties of Neat Epoxy and Fiber Reinforced Polymer Composites: Experimental Characterization and Theoretical Predictions.
    Naresh K; Khan KA; Umer R; Vasudevan A
    Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32751254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of Environmental Ageing of Polymers and Polymer Composites-Durability Prediction Methods.
    Starkova O; Gagani AI; Karl CW; Rocha IBCM; Burlakovs J; Krauklis AE
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended creep behavior of dental composites using time-temperature superposition principle.
    Vaidyanathan TK; Vaidyanathan J; Cherian Z
    Dent Mater; 2003 Jan; 19(1):46-53. PubMed ID: 12498896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical Resistance Prediction for Functionalized Multi-Walled Carbon Nanotubes/Epoxy Resin Composite Gasket under Thermal Creep Conditions.
    Wang W; Yue X; Huang H; Wang C; Mo D; Wu Y; Xu Q; Zhou C; Zhu H; Zhang C
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31450812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting plasticization efficiency from three-dimensional molecular structure of a polymer plasticizer.
    Tarvainen M; Sutinen R; Somppi M; Paronen P; Poso A
    Pharm Res; 2001 Dec; 18(12):1760-6. PubMed ID: 11785698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creep and dynamic viscoelastic behavior of endodontic fiber-reinforced composite posts.
    Papadogiannis D; Lakes RS; Palaghias G; Papadogiannis Y
    J Prosthodont Res; 2009 Oct; 53(4):185-92. PubMed ID: 19699701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite Element Method-Based Simulation Creep Behavior of Viscoelastic Carbon-Fiber Composite.
    Katouzian M; Vlase S; Scutaru ML
    Polymers (Basel); 2021 Mar; 13(7):. PubMed ID: 33806047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of vapor detector arrays formed through plasticization of carbon black-organic polymer composites.
    Koscho ME; Grubbs RH; Lewis NS
    Anal Chem; 2002 Mar; 74(6):1307-15. PubMed ID: 11922298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscoelastic properties of chitosan with different hydration degrees as studied by dynamic mechanical analysis.
    Mano JF
    Macromol Biosci; 2008 Jan; 8(1):69-76. PubMed ID: 17902189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Static, Creep, and Fatigue Tensile Behavior of Basalt Fiber/Polypropylene Composite Rods for Passive Concrete Reinforcement.
    Tanks J; Naito K; Ueda H
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creep Response of Carbon-Fiber-Reinforced Composite Using Homogenization Method.
    Katouzian M; Vlase S
    Polymers (Basel); 2021 Mar; 13(6):. PubMed ID: 33799783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.