These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31717686)

  • 1. Engineered Artificial MicroRNA Precursors Facilitate Cloning and Gene Silencing in Arabidopsis and Rice.
    Zhang D; Zhang N; Shen W; Li JF
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering Artificial MicroRNAs for Multiplex Gene Silencing and Simplified Transgenic Screen.
    Zhang N; Zhang D; Chen SL; Gong BQ; Guo Y; Xu L; Zhang XN; Li JF
    Plant Physiol; 2018 Nov; 178(3):989-1001. PubMed ID: 30291175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors.
    Carbonell A; Fahlgren N; Mitchell S; Cox KL; Reilly KC; Mockler TC; Carrington JC
    Plant J; 2015 Jun; 82(6):1061-1075. PubMed ID: 25809382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Specific gene silencing of At1g13770 and At2g23470 by artificial mi-croRNAs in Arabidopsis].
    Li WC; Zhao SQ
    Yi Chuan; 2012 Mar; 34(3):348-55. PubMed ID: 22425954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants.
    Li JF; Chung HS; Niu Y; Bush J; McCormack M; Sheen J
    Plant Cell; 2013 May; 25(5):1507-22. PubMed ID: 23645631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis.
    Liu C; Zhang L; Sun J; Luo Y; Wang MB; Fan YL; Wang L
    Mol Biol Rep; 2010 Feb; 37(2):903-9. PubMed ID: 19693698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis.
    Carbonell A; Takeda A; Fahlgren N; Johnson SC; Cuperus JT; Carrington JC
    Plant Physiol; 2014 May; 165(1):15-29. PubMed ID: 24647477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved method for constructing plant amiRNA vectors with blue-white screening and MAGIC.
    Yan H; Zhong X; Jiang S; Zhai C; Ma L
    Biotechnol Lett; 2011 Aug; 33(8):1683-8. PubMed ID: 21479629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Simple Protoplast-Based Method for Screening Potent Artificial miRNA for Maximal Gene Silencing in Arabidopsis.
    Zhang N; Zhang D; Li JF
    Curr Protoc Mol Biol; 2017 Jan; 117():26.9.1-26.9.10. PubMed ID: 28060406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel constructs for efficient cloning of sRNA-encoding DNA and uniform silencing of plant genes employing artificial trans-acting small interfering RNA.
    Baykal U; Liu H; Chen X; Nguyen HT; Zhang ZJ
    Plant Cell Rep; 2016 Oct; 35(10):2137-50. PubMed ID: 27417696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Undesired small RNAs originate from an artificial microRNA precursor in transgenic petunia (Petunia hybrida).
    Guo Y; Han Y; Ma J; Wang H; Sang X; Li M
    PLoS One; 2014; 9(6):e98783. PubMed ID: 24897430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts.
    Khraiwesh B; Ossowski S; Weigel D; Reski R; Frank W
    Plant Physiol; 2008 Oct; 148(2):684-93. PubMed ID: 18753280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants.
    Ai T; Zhang L; Gao Z; Zhu CX; Guo X
    Plant Biol (Stuttg); 2011 Mar; 13(2):304-16. PubMed ID: 21309977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel approach for the construction of plant amiRNA expression vectors.
    Yan H; Deng X; Cao Y; Huang J; Ma L; Zhao B
    J Biotechnol; 2011 Jan; 151(1):9-14. PubMed ID: 21040750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient silencing of endogenous microRNAs using artificial microRNAs in Arabidopsis thaliana.
    Eamens AL; Agius C; Smith NA; Waterhouse PM; Wang MB
    Mol Plant; 2011 Jan; 4(1):157-70. PubMed ID: 20943811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simplified method for constructing artificial microRNAs based on the osa-MIR528 precursor.
    Yan F; Lu Y; Wu G; Peng J; Zheng H; Lin L; Chen J
    J Biotechnol; 2012 Aug; 160(3-4):146-50. PubMed ID: 22465291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos.
    Jelly NS; Schellenbaum P; Walter B; Maillot P
    Transgenic Res; 2012 Dec; 21(6):1319-27. PubMed ID: 22427113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transgene-free, virus-based gene silencing in plants by artificial microRNAs derived from minimal precursors.
    Cisneros AE; Martín-García T; Primc A; Kuziuta W; Sánchez-Vicente J; Aragonés V; Daròs JA; Carbonell A
    Nucleic Acids Res; 2023 Oct; 51(19):10719-10736. PubMed ID: 37713607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing effective amiRNA and multimeric amiRNA against plant viruses.
    Fahim M; Larkin PJ
    Methods Mol Biol; 2013; 942():357-77. PubMed ID: 23027061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae.
    Warthmann N; Das S; Lanz C; Weigel D
    Mol Biol Evol; 2008 May; 25(5):892-902. PubMed ID: 18296705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.