These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31717856)

  • 1. Design and Speed-Adaptive Control of a Powered Geared Five-Bar Prosthetic Knee Using BP Neural Network Gait Recognition.
    Sun Y; Huang R; Zheng J; Dong D; Chen X; Bai L; Ge W
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31717856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target of physiological gait: Realization of speed adaptive control for a prosthetic knee during swing flexion.
    Cao W; Yu H; Zhao W; Li J; Wei X
    Technol Health Care; 2018; 26(1):133-144. PubMed ID: 29060946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial.
    Prinsen EC; Nederhand MJ; Sveinsdóttir HS; Prins MR; van der Meer F; Koopman HFJM; Rietman JS
    Gait Posture; 2017 Jan; 51():254-260. PubMed ID: 27838569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.
    Sun Y; Ge W; Zheng J; Dong D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1031-8. PubMed ID: 25675463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.
    Cao W; Yu H; Zhao W; Meng Q; Chen W
    Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking.
    Martinez-Villalpando EC; Herr H
    J Rehabil Res Dev; 2009; 46(3):361-73. PubMed ID: 19675988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and energetic evaluation of a prosthetic knee joint actuator with a lockable parallel spring.
    Geeroms J; Flynn L; Jimenez-Fabian R; Vanderborght B; Lefeber D
    Bioinspir Biomim; 2017 Feb; 12(2):026002. PubMed ID: 28059775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of locomotion mode recognition errors on volitional control of powered above-knee prostheses.
    Zhang F; Liu M; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2015 Jan; 23(1):64-72. PubMed ID: 25486645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preliminary Experiments with a Unified Controller for a Powered Knee-Ankle Prosthetic Leg Across Walking Speeds.
    Quintero D; Villarreal DJ; Gregg RD
    Rep U S; 2016 Oct; 2016():5427-5433. PubMed ID: 28392969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effects of Prosthesis Inertial Properties on Prosthetic Knee Moment and Hip Energetics Required to Achieve Able-Bodied Kinematics.
    Narang YS; Arelekatti VN; Winter AG
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):754-63. PubMed ID: 26186794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Knee Motion Generation Method for Transfemoral Prosthesis Based on Kinematic Synergy and Inertial Motion.
    Sano H; Wada T
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2387-2397. PubMed ID: 28981420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological parameters analysis of transfemoral amputees with different prosthetic knees.
    Li S; Cao W; Yu H; Meng Q; Chen W
    Acta Bioeng Biomech; 2019; 21(3):135-142. PubMed ID: 31798017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generating an Adaptive and Robust Walking Pattern for a Prosthetic Ankle-Foot by Utilizing a Nonlinear Autoregressive Network With Exogenous Inputs.
    Kouzbary HA; Kouzbary MA; Tham LK; Liu J; Shasmin HN; Abu Osman NA
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6297-6305. PubMed ID: 33979293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive performance and brain dynamics during walking with a novel bionic foot: A pilot study.
    De Pauw K; Cherelle P; Tassignon B; Van Cutsem J; Roelands B; Marulanda FG; Lefeber D; Vanderborght B; Meeusen R
    PLoS One; 2019; 14(4):e0214711. PubMed ID: 30943265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilizing moments of force on a prosthetic knee during stance in the first steps after gait initiation.
    van Keeken HG; Vrieling AH; Hof AL; Postema K; Otten B
    Med Eng Phys; 2012 Jul; 34(6):733-9. PubMed ID: 21996358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking.
    Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L
    Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of a user-adaptive prosthetic knee on planned gait termination.
    Prinsen EC; Nederhand MJ; Koopman BF; Rietman JS
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1254-1259. PubMed ID: 28813993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic and dynamic performance of prosthetic knee joint using six-bar mechanism.
    Jin D; Zhang R; Dimo HO; Wang R; Zhang J
    J Rehabil Res Dev; 2003; 40(1):39-48. PubMed ID: 15150719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Cyber Expert System for Auto-Tuning Powered Prosthesis Impedance Control Parameters.
    Huang H; Crouch DL; Liu M; Sawicki GS; Wang D
    Ann Biomed Eng; 2016 May; 44(5):1613-24. PubMed ID: 26407703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.