These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 31718091)
1. Radio-Enhancing Properties of Bimetallic Au:Pt Nanoparticles: Experimental and Theoretical Evidence. Salado-Leza D; Traore A; Porcel E; Dragoe D; Muñoz A; Remita H; García G; Lacombe S Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31718091 [TBL] [Abstract][Full Text] [Related]
2. Modeling gold nanoparticle radiosensitization using a clustering algorithm to quantitate DNA double-strand breaks with mixed-physics Monte Carlo simulation. Liu R; Zhao T; Zhao X; Reynoso FJ Med Phys; 2019 Nov; 46(11):5314-5325. PubMed ID: 31505039 [TBL] [Abstract][Full Text] [Related]
3. Radiation Enhancer Effect of Platinum Nanoparticles in Breast Cancer Cell Lines: In Vitro and In Silico Analyses. Hullo M; Grall R; Perrot Y; Mathé C; Ménard V; Yang X; Lacombe S; Porcel E; Villagrasa C; Chevillard S; Bourneuf E Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33922713 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo simulation of gold nanoparticles for X-ray enhancement application. Dheyab MA; Aziz AA; Rahman AA; Ashour NI; Musa AS; Braim FS; Jameel MS Biochim Biophys Acta Gen Subj; 2023 Apr; 1867(4):130318. PubMed ID: 36740000 [TBL] [Abstract][Full Text] [Related]
5. A Facile One-Pot Synthesis of Versatile PEGylated Platinum Nanoflowers and Their Application in Radiation Therapy. Yang X; Salado-Leza D; Porcel E; González-Vargas CR; Savina F; Dragoe D; Remita H; Lacombe S Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32120829 [TBL] [Abstract][Full Text] [Related]
6. Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles. Hespeels F; Lucas S; Tabarrant T; Scifoni E; Kraemer M; Chêne G; Strivay D; Tran HN; Heuskin AC Phys Med Biol; 2019 Mar; 64(6):065014. PubMed ID: 30731439 [TBL] [Abstract][Full Text] [Related]
7. Determining dose enhancement factors of high-Z nanoparticles from simulations where lateral secondary particle disequilibrium exists. Rabus H; Gargioni E; Li WB; Nettelbeck H; Villagrasa C Phys Med Biol; 2019 Aug; 64(15):155016. PubMed ID: 31300616 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active Au@Pt core/shell nanoparticles. Zhu F; Zhao G; Dou W Mikrochim Acta; 2018 Sep; 185(10):455. PubMed ID: 30215173 [TBL] [Abstract][Full Text] [Related]
9. Heterogeneous multiscale Monte Carlo simulations for gold nanoparticle radiosensitization. Martinov MP; Thomson RM Med Phys; 2017 Feb; 44(2):644-653. PubMed ID: 28001308 [TBL] [Abstract][Full Text] [Related]
10. Development of bimetallic (Zn@Au) nanoparticles as potential PET-imageable radiosensitizers. Cho J; Wang M; Gonzalez-Lepera C; Mawlawi O; Cho SH Med Phys; 2016 Aug; 43(8):4775. PubMed ID: 27487895 [TBL] [Abstract][Full Text] [Related]
11. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Tseng CW; Chang HY; Chang JY; Huang CC Nanoscale; 2012 Nov; 4(21):6823-30. PubMed ID: 23011048 [TBL] [Abstract][Full Text] [Related]
12. IMPACT OF NANOPARTICLE CLUSTERING ON DOSE RADIO-ENHANCEMENT. Byrne H; McNamara A; Kuncic Z Radiat Prot Dosimetry; 2019 May; 183(1-2):50-54. PubMed ID: 30535388 [TBL] [Abstract][Full Text] [Related]
13. Challenges and Contradictions of Metal Nano-Particle Applications for Radio-Sensitivity Enhancement in Cancer Therapy. Pagáčová E; Štefančíková L; Schmidt-Kaler F; Hildenbrand G; Vičar T; Depeš D; Lee JH; Bestvater F; Lacombe S; Porcel E; Roux S; Wenz F; Kopečná O; Falková I; Hausmann M; Falk M Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30704035 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles. Kim YH; Kim AY; Kim GH; Han YH; Chung MA; Jung SD Biomed Microdevices; 2016 Feb; 18(1):14. PubMed ID: 26830410 [TBL] [Abstract][Full Text] [Related]
15. Advances in modelling gold nanoparticle radiosensitization using new Geant4-DNA physics models. Engels E; Bakr S; Bolst D; Sakata D; Li N; Lazarakis P; McMahon SJ; Ivanchenko V; Rosenfeld AB; Incerti S; Kyriakou I; Emfietzoglou D; Lerch MLF; Tehei M; Corde S; Guatelli S Phys Med Biol; 2020 Nov; 65(22):225017. PubMed ID: 32916674 [TBL] [Abstract][Full Text] [Related]
16. Impact of fluorescence emission from gold atoms on surrounding biological tissue-implications for nanoparticle radio-enhancement. Byrne HL; Gholami Y; Kuncic Z Phys Med Biol; 2017 Apr; 62(8):3097-3110. PubMed ID: 28225353 [TBL] [Abstract][Full Text] [Related]
17. Monte Carlo-based calculation of nano-scale dose enhancement factor and relative biological effectiveness in using different nanoparticles as a radiosensitizer. Robatjazi M; Baghani HR; Rostami A; Pashazadeh A Int J Radiat Biol; 2021; 97(9):1289-1298. PubMed ID: 34047663 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the local dose enhancement in the combination of proton therapy and nanoparticles. Martínez-Rovira I; Prezado Y Med Phys; 2015 Nov; 42(11):6703-10. PubMed ID: 26520760 [TBL] [Abstract][Full Text] [Related]
19. Monte Carlo study of the dose enhancement effect of gold nanoparticles during X-ray therapies and evaluation of the anti-angiogenic effect on tumour capillary vessels. Amato E; Italiano A; Leotta S; Pergolizzi S; Torrisi L J Xray Sci Technol; 2013; 21(2):237-47. PubMed ID: 23694913 [TBL] [Abstract][Full Text] [Related]
20. Electron track structure simulations in a gold nanoparticle using Geant4-DNA. Sakata D; Kyriakou I; Tran HN; Bordage MC; Rosenfeld A; Ivanchenko V; Incerti S; Emfietzoglou D; Guatelli S Phys Med; 2019 Jul; 63():98-104. PubMed ID: 31221415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]