These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31718149)

  • 21. NMR Molecular Replacement Provides New Insights into Binding Modes to Bromodomains of BRD4 and TRIM24.
    Torres F; Walser R; Kaderli J; Rossi E; Bobby R; Packer MJ; Sarda S; Walker G; Hitchin JR; Milbradt AG; Orts J
    J Med Chem; 2022 Apr; 65(7):5565-5574. PubMed ID: 35357834
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous Ligand and Receptor Tracking through NMR Spectroscopy Enabled by Distinct
    Simmons JR; Murza A; Lumsden MD; Kenward C; Marsault É; Rainey JK
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31357423
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Segmental Isotope Labelling of an Individual Bromodomain of a Tandem Domain BRD4 Using Sortase A.
    Williams FP; Milbradt AG; Embrey KJ; Bobby R
    PLoS One; 2016; 11(4):e0154607. PubMed ID: 27128490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Virtual screen to NMR (VS2NMR): Discovery of fragment hits for the CBP bromodomain.
    Spiliotopoulos D; Zhu J; Wamhoff EC; Deerain N; Marchand JR; Aretz J; Rademacher C; Caflisch A
    Bioorg Med Chem Lett; 2017 Jun; 27(11):2472-2478. PubMed ID: 28410781
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure investigation, enrichment analysis and structure-based repurposing of FDA-approved drugs as inhibitors of BET-BRD4.
    Wakchaure P; Velayutham R; Roy KK
    J Biomol Struct Dyn; 2019 Aug; 37(12):3048-3057. PubMed ID: 30079805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mass spectrometry for fragment screening.
    Chan DS; Whitehouse AJ; Coyne AG; Abell C
    Essays Biochem; 2017 Nov; 61(5):465-473. PubMed ID: 28986384
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Applications of (19)F-NMR in Fragment-Based Drug Discovery.
    Norton RS; Leung EW; Chandrashekaran IR; MacRaild CA
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27438818
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery.
    Winter A; Higueruelo AP; Marsh M; Sigurdardottir A; Pitt WR; Blundell TL
    Q Rev Biophys; 2012 Nov; 45(4):383-426. PubMed ID: 22971516
    [TBL] [Abstract][Full Text] [Related]  

  • 29.
    Buchholz CR; Pomerantz WCK
    RSC Chem Biol; 2021 Oct; 2(5):1312-1330. PubMed ID: 34704040
    [No Abstract]   [Full Text] [Related]  

  • 30. Mass Spectrometry-Based Fast Photochemical Oxidation of Proteins (FPOP) for Higher Order Structure Characterization.
    Li KS; Shi L; Gross ML
    Acc Chem Res; 2018 Mar; 51(3):736-744. PubMed ID: 29450991
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery.
    Arntson KE; Pomerantz WC
    J Med Chem; 2016 Jun; 59(11):5158-71. PubMed ID: 26599421
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Paramagnetic NMR in drug discovery.
    Softley CA; Bostock MJ; Popowicz GM; Sattler M
    J Biomol NMR; 2020 Jul; 74(6-7):287-309. PubMed ID: 32524233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The precious fluorine on the ring: fluorine NMR for biological systems.
    Boeszoermenyi A; Ogórek B; Jain A; Arthanari H; Wagner G
    J Biomol NMR; 2020 Sep; 74(8-9):365-379. PubMed ID: 32651751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Label-free quantitative 1H NMR spectroscopy to study low-affinity ligand-protein interactions in solution: A contribution to the mechanism of polyphenol-mediated astringency.
    Delius J; Frank O; Hofmann T
    PLoS One; 2017; 12(9):e0184487. PubMed ID: 28886151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structure of an allosteric inhibitor of LFA-1 bound to the I-domain studied by crystallography, NMR, and calorimetry.
    Crump MP; Ceska TA; Spyracopoulos L; Henry A; Archibald SC; Alexander R; Taylor RJ; Findlow SC; O'Connell J; Robinson MK; Shock A
    Biochemistry; 2004 Mar; 43(9):2394-404. PubMed ID: 14992576
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR.
    Marti DN; Hu CK; An SS; von Haller P; Schaller J; Llinás M
    Biochemistry; 1997 Sep; 36(39):11591-604. PubMed ID: 9305949
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ligand
    Platzer G; Ptaszek AL; Böttcher J; Fuchs JE; Geist L; Braun D; McConnell DB; Konrat R; Sánchez-Murcia PA; Mayer M
    Chemphyschem; 2024 Jan; 25(1):e202300636. PubMed ID: 37955910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perfluoro-tert-butyl Homoserine Is a Helix-Promoting, Highly Fluorinated, NMR-Sensitive Aliphatic Amino Acid: Detection of the Estrogen Receptor·Coactivator Protein-Protein Interaction by
    Tressler CM; Zondlo NJ
    Biochemistry; 2017 Feb; 56(8):1062-1074. PubMed ID: 28165218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes.
    Dias DM; Ciulli A
    Prog Biophys Mol Biol; 2014; 116(2-3):101-12. PubMed ID: 25175337
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.