BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31718175)

  • 1. Multiscale Modeling of Thiol Overoxidation in Peroxiredoxins by Hydrogen Peroxide.
    Semelak JA; Battistini F; Radi R; Trujillo M; Zeida A; Estrin DA
    J Chem Inf Model; 2020 Feb; 60(2):843-853. PubMed ID: 31718175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics.
    Hugo M; Turell L; Manta B; Botti H; Monteiro G; Netto LE; Alvarez B; Radi R; Trujillo M
    Biochemistry; 2009 Oct; 48(40):9416-26. PubMed ID: 19737009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from
    Cuevasanta E; Reyes AM; Zeida A; Mastrogiovanni M; De Armas MI; Radi R; Alvarez B; Trujillo M
    J Biol Chem; 2019 Sep; 294(37):13593-13605. PubMed ID: 31311857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidizing substrate specificity of Mycobacterium tuberculosis alkyl hydroperoxide reductase E: kinetics and mechanisms of oxidation and overoxidation.
    Reyes AM; Hugo M; Trostchansky A; Capece L; Radi R; Trujillo M
    Free Radic Biol Med; 2011 Jul; 51(2):464-73. PubMed ID: 21571062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extraordinary catalytic ability of peroxiredoxins: a combined experimental and QM/MM study on the fast thiol oxidation step.
    Zeida A; Reyes AM; Lebrero MC; Radi R; Trujillo M; Estrin DA
    Chem Commun (Camb); 2014 Sep; 50(70):10070-3. PubMed ID: 25045760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis.
    Hugo M; Van Laer K; Reyes AM; Vertommen D; Messens J; Radi R; Trujillo M
    J Biol Chem; 2014 Feb; 289(8):5228-39. PubMed ID: 24379404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The active site architecture in peroxiredoxins: a case study on Mycobacterium tuberculosis AhpE.
    Pedre B; van Bergen LA; Palló A; Rosado LA; Dufe VT; Molle IV; Wahni K; Erdogan H; Alonso M; Proft FD; Messens J
    Chem Commun (Camb); 2016 Aug; 52(67):10293-6. PubMed ID: 27471753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PrxQ B from Mycobacterium tuberculosis is a monomeric, thioredoxin-dependent and highly efficient fatty acid hydroperoxide reductase.
    Reyes AM; Vazquez DS; Zeida A; Hugo M; Piñeyro MD; De Armas MI; Estrin D; Radi R; Santos J; Trujillo M
    Free Radic Biol Med; 2016 Dec; 101():249-260. PubMed ID: 27751911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox chemistry of Mycobacterium tuberculosis alkylhydroperoxide reductase E (AhpE): Structural and mechanistic insight into a mycoredoxin-1 independent reductive pathway of AhpE via mycothiol.
    Kumar A; Balakrishna AM; Nartey W; Manimekalai MSS; Grüber G
    Free Radic Biol Med; 2016 Aug; 97():588-601. PubMed ID: 27417938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Conundrum of Hydrogen Peroxide Signaling and the Emerging Role of Peroxiredoxins as Redox Relay Hubs.
    Stöcker S; Van Laer K; Mijuskovic A; Dick TP
    Antioxid Redox Signal; 2018 Mar; 28(7):558-573. PubMed ID: 28587525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing.
    Portillo-Ledesma S; Randall LM; Parsonage D; Dalla Rizza J; Karplus PA; Poole LB; Denicola A; Ferrer-Sueta G
    Biochemistry; 2018 Jun; 57(24):3416-3424. PubMed ID: 29553725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
    Trujillo M; Ferrer-Sueta G; Thomson L; Flohé L; Radi R
    Subcell Biochem; 2007; 44():83-113. PubMed ID: 18084891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does the protein environment optimize the thermodynamics of thiol sulfenylation? Insights from model systems to QM/MM calculations on human 2-Cys peroxiredoxin.
    Oláh J; van Bergen L; De Proft F; Roos G
    J Biomol Struct Dyn; 2015; 33(3):584-96. PubMed ID: 24762169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The thiol of human serum albumin: Acidity, microenvironment and mechanistic insights on its oxidation to sulfenic acid.
    Bonanata J; Turell L; Antmann L; Ferrer-Sueta G; Botasini S; Méndez E; Alvarez B; Coitiño EL
    Free Radic Biol Med; 2017 Jul; 108():952-962. PubMed ID: 28438657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Basis of Hydroperoxide Specificity in Peroxiredoxins: The Case of AhpE from Mycobacterium tuberculosis.
    Zeida A; Reyes AM; Lichtig P; Hugo M; Vazquez DS; Santos J; González Flecha FL; Radi R; Estrin DA; Trujillo M
    Biochemistry; 2015 Dec; 54(49):7237-47. PubMed ID: 26569371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine.
    Peskin AV; Dickerhof N; Poynton RA; Paton LN; Pace PE; Hampton MB; Winterbourn CC
    J Biol Chem; 2013 May; 288(20):14170-14177. PubMed ID: 23543738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peroxiredoxins as preferential targets in H2O2-induced signaling.
    Randall LM; Ferrer-Sueta G; Denicola A
    Methods Enzymol; 2013; 527():41-63. PubMed ID: 23830625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting protein thiol reactivity and specificity in peroxide reduction.
    Ferrer-Sueta G; Manta B; Botti H; Radi R; Trujillo M; Denicola A
    Chem Res Toxicol; 2011 Apr; 24(4):434-50. PubMed ID: 21391663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1.
    Truzzi DR; Coelho FR; Paviani V; Alves SV; Netto LES; Augusto O
    J Biol Chem; 2019 Sep; 294(38):14055-14067. PubMed ID: 31366734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61.
    Baker LM; Poole LB
    J Biol Chem; 2003 Mar; 278(11):9203-11. PubMed ID: 12514184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.