These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31718302)

  • 1. Copper oxide nanoparticles as an effective anti-biofilm agent against a copper tolerant marine bacterium,
    Padmavathi AR; Sriyutha Murthy P; Das A; Nishad PA; Pandian R; Rao TS
    Biofouling; 2019 Oct; 35(9):1007-1025. PubMed ID: 31718302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model.
    Eshed M; Lellouche J; Matalon S; Gedanken A; Banin E
    Langmuir; 2012 Aug; 28(33):12288-95. PubMed ID: 22830392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low concentrations of copper oxide nanoparticles alter microbial community structure and function of sediment biofilms.
    Miao L; Wang P; Hou J; Yao Y; Liu Z; Liu S
    Sci Total Environ; 2019 Feb; 653():705-713. PubMed ID: 30759596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifunctional CuO nanoparticles with cytotoxic effects on KYSE30 esophageal cancer cells, antimicrobial and heavy metal sensing activities.
    Nakhaeepour Z; Mashreghi M; Matin MM; NakhaeiPour A; Housaindokht MR
    Life Sci; 2019 Oct; 234():116758. PubMed ID: 31421083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-doped and transition metal-doped CuO nano-powders: structure-physical properties and anti-adhesion activity relationship.
    Khlifi N; Mnif S; Ben Nasr F; Fourati N; Zerrouki C; Chehimi MM; Guermazi H; Aifa S; Guermazi S
    RSC Adv; 2022 Aug; 12(36):23527-23543. PubMed ID: 36090396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms.
    Miao L; Wang C; Hou J; Wang P; Ao Y; Li Y; Geng N; Yao Y; Lv B; Yang Y; You G; Xu Y
    Bioresour Technol; 2016 Sep; 216():537-44. PubMed ID: 27281432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens.
    Shi J; Peng C; Yang Y; Yang J; Zhang H; Yuan X; Chen Y; Hu T
    Nanotoxicology; 2014 Mar; 8(2):179-88. PubMed ID: 23311584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrite-enhanced copper-based Fenton reactions for biofilm removal.
    Wang L; Peng R; Liu X; Heng C; Miao Y; Wang W; Carrier A; Oakes K; Zhang X
    Chem Commun (Camb); 2021 Jun; 57(45):5514-5517. PubMed ID: 33955439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-Potentiation of β-Lactam Antibiotic by Synergistic Combination with Biogenic Copper Oxide Nanocubes against Biofilm Forming Multidrug-Resistant Bacteria.
    Arul Selvaraj RC; Rajendran M; Nagaiah HP
    Molecules; 2019 Aug; 24(17):. PubMed ID: 31443467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic properties and antimicrobial efficacy of Fe doped CuO nanoparticles against the pathogenic bacteria and fungi.
    Pugazhendhi A; Kumar SS; Manikandan M; Saravanan M
    Microb Pathog; 2018 Sep; 122():84-89. PubMed ID: 29894807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro evaluation of cytotoxicity, possible alteration of apoptotic regulatory proteins, and antibacterial activity of synthesized copper oxide nanoparticles.
    Khan S; Ansari AA; Khan AA; Abdulla M; Al-Obaid O; Ahmad R
    Colloids Surf B Biointerfaces; 2017 May; 153():320-326. PubMed ID: 28285257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of magnesium oxide and copper oxide nanoparticles on biofilm formation of
    Hashemifard Dehkordi P; Moshtaghi H; Abbasvali M
    Nanotechnology; 2023 Feb; 34(15):. PubMed ID: 36595339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel eradication methods for Staphylococcus aureus biofilm in poultry farms and abattoirs using disinfectants loaded onto silver and copper nanoparticles.
    Elsayed MM; Elgohary FA; Zakaria AI; Elkenany RM; El-Khateeb AY
    Environ Sci Pollut Res Int; 2020 Aug; 27(24):30716-30728. PubMed ID: 32468379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential impacts of copper oxide nanoparticles and Copper(II) ions on the uptake and accumulation of arsenic in rice (Oryza sativa).
    Wang X; Sun W; Ma X
    Environ Pollut; 2019 Sep; 252(Pt B):967-973. PubMed ID: 31252135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal copper oxide nanoparticles leading to a biphasic dose-response in growth inhibition of
    Ferreira SR; Lopes JM; Paterno LG; Magalhães PO; Cunha-Filho M; Gelfuso GM; Gratieri T
    Future Microbiol; 2023 May; 18():471-479. PubMed ID: 37204307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibiofilm and membrane-damaging potential of cuprous oxide nanoparticles against Staphylococcus aureus with reduced susceptibility to vancomycin.
    Singh A; Ahmed A; Prasad KN; Khanduja S; Singh SK; Srivastava JK; Gajbhiye NS
    Antimicrob Agents Chemother; 2015 Nov; 59(11):6882-90. PubMed ID: 26303796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofilms Benefiting Plants Exposed to ZnO and CuO Nanoparticles Studied with a Root-Mimetic Hollow Fiber Membrane.
    Bonebrake M; Anderson K; Valiente J; Jacobson A; McLean JE; Anderson A; Britt DW
    J Agric Food Chem; 2018 Jul; 66(26):6619-6627. PubMed ID: 28926236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biologically synthesized copper oxide nanoparticles enhanced intracellular damage in ciprofloxacin resistant ESBL producing bacteria.
    Rajivgandhi G; Maruthupandy M; Muneeswaran T; Ramachandran G; Manoharan N; Quero F; Anand M; Song JM
    Microb Pathog; 2019 Feb; 127():267-276. PubMed ID: 30550842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation to copper stress influences biofilm formation in Alteromonas macleodii.
    Cusick KD; Dale JR; Fitzgerald LA; Little BJ; Biffinger JC
    Biofouling; 2017 Jul; 33(6):505-519. PubMed ID: 28604167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.