BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31718714)

  • 1. Improving exposure for transoral oropharyngeal surgery with the floor of mouth window: a cadaveric feasibility study.
    Chung J; Bender-Heine A; Lambert HW
    J Otolaryngol Head Neck Surg; 2019 Nov; 48(1):62. PubMed ID: 31718714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transoral endoscopic surgery: new surgical techniques for oropharyngeal cancer.
    Li RJ; Richmon JD
    Otolaryngol Clin North Am; 2012 Aug; 45(4):823-44. PubMed ID: 22793855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transoral surgery (TOS) in oropharyngeal cancer: Different tools, a single mini-invasive philosophy.
    Tirelli G; Boscolo Nata F; Piovesana M; Quatela E; Gardenal N; Hayden RE
    Surg Oncol; 2018 Dec; 27(4):643-649. PubMed ID: 30449487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotic vs. transoral laser surgery of malignant oropharyngeal tumors-what is best for the patient? : A contemporary review.
    Nagel TH; Chang BA; Hinni ML
    HNO; 2022 May; 70(5):371-379. PubMed ID: 35419634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic review and meta-analysis of margins in transoral surgery for oropharyngeal carcinoma.
    Gorphe P; Simon C
    Oral Oncol; 2019 Nov; 98():69-77. PubMed ID: 31546183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional outcomes, feasibility, and safety of resection of transoral robotic surgery: single-institution series of 35 consecutive cases of transoral robotic surgery for oropharyngeal squamous cell carcinoma.
    Lörincz BB; Möckelmann N; Busch CJ; Knecht R
    Head Neck; 2015 Nov; 37(11):1618-24. PubMed ID: 24955923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A flexible, single-arm robotic surgical system for transoral resection of the tonsil and lateral pharyngeal wall: Next-generation robotic head and neck surgery.
    Holsinger FC
    Laryngoscope; 2016 Apr; 126(4):864-9. PubMed ID: 26509920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. First use of a new retractor in transoral robotic surgery (TORS).
    Hasskamp P; Lang S; Holtmann L; Stuck BA; Mattheis S
    Eur Arch Otorhinolaryngol; 2016 Jul; 273(7):1913-7. PubMed ID: 26179869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of biometric measures to evaluate patient suitability for transoral robotic surgery.
    Arora A; Kotecha J; Acharya A; Garas G; Darzi A; Davies DC; Tolley N
    Head Neck; 2015 Sep; 37(9):1254-60. PubMed ID: 24800962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-operative outcomes of different surgical approaches to oropharyngeal squamous cell cancer: a case-matched study.
    Tirelli G; Bertolin A; Guida F; Zucchini S; Tofanelli M; Rizzotto G; Boscolo-Rizzo P; Danesi G; Gardenal N
    J Laryngol Otol; 2021 Apr; 135(4):348-354. PubMed ID: 33818328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oropharyngeal cancer treatment: the role of transoral surgery.
    Hinni ML; Nagel T; Howard B
    Curr Opin Otolaryngol Head Neck Surg; 2015 Apr; 23(2):132-8. PubMed ID: 25761152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved transoral dissection of the tongue base with a next-generation robotic surgical system.
    Chen MM; Orosco RK; Lim GC; Holsinger FC
    Laryngoscope; 2018 Jan; 128(1):78-83. PubMed ID: 28681924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Outcomes of transoral laser microsurgery for oropharyngeal squamous cell carcinoma in Ireland and review of the literature on transoral approaches.
    Woods RSR; Geyer L; Ionescu A; Callanan D; Sheahan P
    Ir J Med Sci; 2019 May; 188(2):397-403. PubMed ID: 29926338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transoral robotic surgery for oropharyngeal squamous cell carcinoma: a prospective study of feasibility and functional outcomes.
    Moore EJ; Olsen KD; Kasperbauer JL
    Laryngoscope; 2009 Nov; 119(11):2156-64. PubMed ID: 19824067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Clinical observation of coblation assisted transoral microsurgery for the treatment of oral and oropharygneal malignancy].
    Xiao SF; Zhao X; Zhang JB; Shen H; Zhao EM
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2017 Nov; 31(22):1705-1710. PubMed ID: 29798180
    [No Abstract]   [Full Text] [Related]  

  • 16. Transoral Robotic Surgery and De-escalation of Cancer Treatment.
    Wahle B; Zevallos J
    Otolaryngol Clin North Am; 2020 Dec; 53(6):981-994. PubMed ID: 32917423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoperative image-guided transoral robotic surgery: pre-clinical studies.
    Liu WP; Reaugamornrat S; Sorger JM; Siewerdsen JH; Taylor RH; Richmon JD
    Int J Med Robot; 2015 Jun; 11(2):256-67. PubMed ID: 25069602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Successful application of transoral robotic surgery in failures of traditional transoral laser microsurgery: critical considerations.
    Vicini C; Leone CA; Montevecchi F; Dinelli E; Seccia V; Dallan I
    ORL J Otorhinolaryngol Relat Spec; 2014; 76(2):98-104. PubMed ID: 24801375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transoral Surgical Anatomy and Clinical Considerations of Lateral Oropharyngeal Wall, Parapharyngeal Space, and Tongue Base.
    Gun R; Durmus K; Kucur C; Carrau RL; Ozer E
    Otolaryngol Head Neck Surg; 2016 Mar; 154(3):480-5. PubMed ID: 26814206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transoral robotic surgery for oropharyngeal carcinoma: Surgical margins and oncologic outcomes.
    Moore EJ; Van Abel KM; Price DL; Lohse CM; Olsen KD; Jackson RS; Martin EJ
    Head Neck; 2018 Apr; 40(4):747-755. PubMed ID: 29327784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.