BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 31719177)

  • 21. Neutrophil-generated oxidative stress and protein damage in Staphylococcus aureus.
    Beavers WN; Skaar EP
    Pathog Dis; 2016 Aug; 74(6):. PubMed ID: 27354296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Staphylococcus aureus Biofilm-Conditioned Medium Impairs Macrophage-Mediated Antibiofilm Immune Response by Upregulating KLF2 Expression.
    Alboslemy T; Yu B; Rogers T; Kim MH
    Infect Immun; 2019 Apr; 87(4):. PubMed ID: 30692179
    [No Abstract]   [Full Text] [Related]  

  • 23. Immune Evasion by
    de Jong NWM; van Kessel KPM; van Strijp JAG
    Microbiol Spectr; 2019 Mar; 7(2):. PubMed ID: 30927347
    [No Abstract]   [Full Text] [Related]  

  • 24. Staphylococcus aureus uses the ArlRS and MgrA cascade to regulate immune evasion during skin infection.
    Kwiecinski JM; Kratofil RM; Parlet CP; Surewaard BGJ; Kubes P; Horswill AR
    Cell Rep; 2021 Jul; 36(4):109462. PubMed ID: 34320352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Sae-regulated and Agr-regulated factors on the escape of Staphylococcus aureus from human macrophages.
    Münzenmayer L; Geiger T; Daiber E; Schulte B; Autenrieth SE; Fraunholz M; Wolz C
    Cell Microbiol; 2016 Aug; 18(8):1172-83. PubMed ID: 26895738
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of Host Arginase Activity Against Staphylococcal Bloodstream Infection by Different Metabolites.
    Pang R; Zhou H; Huang Y; Su Y; Chen X
    Front Immunol; 2020; 11():1639. PubMed ID: 32849560
    [No Abstract]   [Full Text] [Related]  

  • 27. The surreptitious survival of the emerging pathogen Staphylococcus lugdunensis within macrophages as an immune evasion strategy.
    Flannagan RS; Watson DW; Surewaard BGJ; Kubes P; Heinrichs DE
    Cell Microbiol; 2018 Nov; 20(11):e12869. PubMed ID: 29904997
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 2-O-Sulfated Domains in Syndecan-1 Heparan Sulfate Inhibit Neutrophil Cathelicidin and Promote Staphylococcus aureus Corneal Infection.
    Hayashida A; Amano S; Gallo RL; Linhardt RJ; Liu J; Park PW
    J Biol Chem; 2015 Jun; 290(26):16157-67. PubMed ID: 25931123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coinfection with Leishmania major and Staphylococcus aureus enhances the pathologic responses to both microbes through a pathway involving IL-17A.
    Borbón TY; Scorza BM; Clay GM; Lima Nobre de Queiroz F; Sariol AJ; Bowen JL; Chen Y; Zhanbolat B; Parlet CP; Valadares DG; Cassel SL; Nauseef WM; Horswill AR; Sutterwala FS; Wilson ME
    PLoS Negl Trop Dis; 2019 May; 13(5):e0007247. PubMed ID: 31107882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Staphylococcus aureus Skin Colonization Is Enhanced by the Interaction of Neutrophil Extracellular Traps with Keratinocytes.
    Bitschar K; Staudenmaier L; Klink L; Focken J; Sauer B; Fehrenbacher B; Herster F; Bittner Z; Bleul L; Schaller M; Wolz C; Weber ANR; Peschel A; Schittek B
    J Invest Dermatol; 2020 May; 140(5):1054-1065.e4. PubMed ID: 31857094
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Genome-Wide Screen Identifies Factors Involved in
    Yang D; Ho YX; Cowell LM; Jilani I; Foster SJ; Prince LR
    Front Immunol; 2019; 10():45. PubMed ID: 30766531
    [No Abstract]   [Full Text] [Related]  

  • 32. Leukocidins and the Nuclease Nuc Prevent Neutrophil-Mediated Killing of Staphylococcus aureus Biofilms.
    Bhattacharya M; Berends ETM; Zheng X; Hill PJ; Chan R; Torres VJ; Wozniak DJ
    Infect Immun; 2020 Sep; 88(10):. PubMed ID: 32719153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interleukin-33 facilitates cutaneous defense against Staphylococcus aureus by promoting the development of neutrophil extracellular trap.
    Wang X; Li X; Chen L; Yuan B; Liu T; Dong Q; Liu Y; Yin H
    Int Immunopharmacol; 2020 Apr; 81():106256. PubMed ID: 32028244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extracellular Nucleases of Streptococcus equi subsp. zooepidemicus Degrade Neutrophil Extracellular Traps and Impair Macrophage Activity of the Host.
    Ma F; Guo X; Fan H
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27815272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Longitudinal proliferation mapping in vivo reveals NADPH oxidase-mediated dampening of Staphylococcus aureus growth rates within neutrophils.
    Seiß EA; Krone A; Formaglio P; Goldmann O; Engelmann S; Schraven B; Medina E; Müller AJ
    Sci Rep; 2019 Apr; 9(1):5703. PubMed ID: 30952906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutrophils in innate host defense against Staphylococcus aureus infections.
    Rigby KM; DeLeo FR
    Semin Immunopathol; 2012 Mar; 34(2):237-59. PubMed ID: 22080185
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Bhattacharya M; Berends ETM; Chan R; Schwab E; Roy S; Sen CK; Torres VJ; Wozniak DJ
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7416-7421. PubMed ID: 29941565
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Impact of Hypoxia on the Host-Pathogen Interaction between Neutrophils and
    Hajdamowicz NH; Hull RC; Foster SJ; Condliffe AM
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31703398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Staphylococci evade the innate immune response by disarming neutrophils and forming biofilms.
    de Vor L; Rooijakkers SHM; van Strijp JAG
    FEBS Lett; 2020 Aug; 594(16):2556-2569. PubMed ID: 32144756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glycolytic dependency of high-level nitric oxide resistance and virulence in Staphylococcus aureus.
    Vitko NP; Spahich NA; Richardson AR
    mBio; 2015 Apr; 6(2):. PubMed ID: 25852157
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.