These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 31719802)
1. Feasibility study on the use of 230 MeV proton cyclotron in proton therapy centers as a spallation neutron source for BNCT. Nobakht E; Fouladi N Rep Pract Oncol Radiother; 2019; 24(6):644-653. PubMed ID: 31719802 [TBL] [Abstract][Full Text] [Related]
2. Accelerator driven neutron source design via beryllium target and Khorshidi A J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209 [TBL] [Abstract][Full Text] [Related]
3. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors. Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309 [TBL] [Abstract][Full Text] [Related]
4. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy. Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968 [TBL] [Abstract][Full Text] [Related]
5. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator. Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720 [TBL] [Abstract][Full Text] [Related]
6. A study on the treatment of brain tumors with BNCT using several moderators with different thicknesses. Zhu Y; Lin Z; Yu H; Yu X Appl Radiat Isot; 2024 Jun; 208():111303. PubMed ID: 38531243 [TBL] [Abstract][Full Text] [Related]
7. Experimental verification of beam characteristics for cyclotron-based epithermal neutron source (C-BENS). Tanaka H; Sakurai Y; Suzuki M; Masunaga S; Mitsumoto T; Fujita K; Kashino G; Kinashi Y; Liu Y; Takada M; Ono K; Maruhashi A Appl Radiat Isot; 2011 Dec; 69(12):1642-5. PubMed ID: 21463945 [TBL] [Abstract][Full Text] [Related]
8. Investigation on the reflector/moderator geometry and its effect on the neutron beam design in BNCT. Kasesaz Y; Rahmani F; Khalafi H Appl Radiat Isot; 2015 Dec; 106():34-7. PubMed ID: 26298435 [TBL] [Abstract][Full Text] [Related]
9. Design of Beam Shaping Assemblies for Accelerator-Based BNCT With Multi-Terminals. Li G; Jiang W; Zhang L; Chen W; Li Q Front Public Health; 2021; 9():642561. PubMed ID: 33777888 [TBL] [Abstract][Full Text] [Related]
10. Feasibility study of using laser-generated neutron beam for BNCT. Kasesaz Y; Rahmani F; Khalafi H Appl Radiat Isot; 2015 Sep; 103():173-6. PubMed ID: 26115204 [TBL] [Abstract][Full Text] [Related]
11. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT). Capoulat ME; Minsky DM; Kreiner AJ Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544 [TBL] [Abstract][Full Text] [Related]
12. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom. Rasouli FS; Masoudi SF Appl Radiat Isot; 2012 Dec; 70(12):2755-62. PubMed ID: 23041781 [TBL] [Abstract][Full Text] [Related]
13. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design. Lee PY; Liu YH; Jiang SH Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784 [TBL] [Abstract][Full Text] [Related]
14. Development of a dose distribution shifter to fit inside the collimator of a Boron Neutron Capture Therapy irradiation system to treat superficial tumours. Hu N; Tanaka H; Yoshikawa S; Miyao M; Akita K; Aihara T; Ono K Phys Med; 2021 Feb; 82():17-24. PubMed ID: 33548793 [TBL] [Abstract][Full Text] [Related]
15. Accelerator-based epithermal neutron beam design for neutron capture therapy. Yanch JC; Zhou XL; Shefer RE; Klinkowstein RE Med Phys; 1992; 19(3):709-21. PubMed ID: 1324392 [TBL] [Abstract][Full Text] [Related]
16. Design of a mixed material moderator in a beam-shaping assembly for proton accelerator-based boron neutron capture therapy. Ge Y; Zhong Y; Yuan N; Sun Y; Zou L; Yang Z; Ma W; Lu L Appl Radiat Isot; 2024 Dec; 214():111515. PubMed ID: 39276639 [TBL] [Abstract][Full Text] [Related]
17. Design of a filtration system to improve the dose distribution of an accelerator-based neutron capture therapy system. Hu N; Tanaka H; Ono K Med Phys; 2022 Oct; 49(10):6609-6621. PubMed ID: 35941788 [TBL] [Abstract][Full Text] [Related]
18. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT. Wang CK; Blue TE; Blue JW Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457 [TBL] [Abstract][Full Text] [Related]
19. From Nuclear Reactor-Based to Proton Accelerator-Based Therapy: The Finnish Boron Neutron Capture Therapy Experience. Porra L; Wendland L; Seppälä T; Koivunoro H; Revitzer H; Tervonen J; Kankaanranta L; Anttonen A; Tenhunen M; Joensuu H Cancer Biother Radiopharm; 2023 Apr; 38(3):184-191. PubMed ID: 36269660 [TBL] [Abstract][Full Text] [Related]
20. Exploration of Adiabatic Resonance Crossing Through Neutron Activator Design for Thermal and Epithermal Neutron Formation in (99)Mo Production and BNCT Applications. Khorshidi A Cancer Biother Radiopharm; 2015 Oct; 30(8):317-29. PubMed ID: 26397967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]