BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31720524)

  • 1. Protein-Stabilizing Effect of Amphiphilic Block Copolymers with a Tertiary Sulfonium-Containing Zwitterionic Segment.
    Imamura R; Mori H
    ACS Omega; 2019 Nov; 4(19):18234-18247. PubMed ID: 31720524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Zwitterionic Polymers Containing a Tertiary Sulfonium Group for Protein Stabilization.
    Imamura R; Mori H
    Biomacromolecules; 2019 Feb; 20(2):904-915. PubMed ID: 30566330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, Assembled Structures, and DNA Complexation of Thermoresponsive Lysine-Based Zwitterionic and Cationic Block Copolymers.
    Kanto R; Qiao Y; Masuko K; Furusawa H; Yano S; Nakabayashi K; Mori H
    Langmuir; 2019 Apr; 35(13):4646-4659. PubMed ID: 30845801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution and Solid-State Behavior of Amphiphilic ABA Triblock Copolymers of Poly(acrylic acid-
    Neal TJ; Bradley RD; Murray MW; Williams NSJ; Emmett SN; Ryan AJ; Spain SG; Mykhaylyk OO
    Macromolecules; 2022 Nov; 55(21):9726-9739. PubMed ID: 36397936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Self-Assembly of Poly(
    Moraes RM; Carvalho LT; Alves GM; Medeiros SF; Bourgeat-Lami E; Santos AM
    Polymers (Basel); 2020 May; 12(6):. PubMed ID: 32486145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface Active to Non-Surface Active Transition and Micellization Behaviour of Zwitterionic Amphiphilic Diblock Copolymers: Hydrophobicity and Salt Dependency.
    Murugaboopathy S; Matsuoka H
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixed Polyplex Micelles with Thermoresponsive and Lysine-Based Zwitterionic Shells Derived from Two Poly(vinyl amine)-Based Block Copolymers.
    Kanto R; Yonenuma R; Yamamoto M; Furusawa H; Yano S; Haruki M; Mori H
    Langmuir; 2021 Mar; 37(10):3001-3014. PubMed ID: 33650430
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-ionic amphiphilic block copolymers by RAFT-polymerization and their self-organization.
    Garnier S; Laschewsky A
    Colloid Polym Sci; 2006; 284(11):1243-1254. PubMed ID: 24058234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RAFT Emulsion Polymerization of Styrene Using a Poly((
    Nieswandt K; Georgopanos P; Held M; Sperling E; Abetz V
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of block cationic polyacrylamide precursors using an aqueous RAFT dispersion polymerization.
    Huang B; Jiang J; Kang M; Liu P; Sun H; Li BG; Wang WJ
    RSC Adv; 2019 Apr; 9(22):12370-12383. PubMed ID: 35515873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of poly(N-isopropylacrylamide)-b-poly(2-vinylpyridine) block copolymers via RAFT polymerization and micellization behavior in aqueous solution.
    Zeng J; Shi K; Zhang Y; Sun X; Deng L; Guo X; Du Z; Zhang B
    J Colloid Interface Sci; 2008 Jun; 322(2):654-9. PubMed ID: 18395739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biobased Amphiphilic Block Copolymers by RAFT-Mediated PISA in Green Solvent.
    Coumes F; Balarezo M; Rieger J; Stoffelbach F
    Macromol Rapid Commun; 2020 May; 41(9):e2000002. PubMed ID: 32249485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Smart Poly(lactide)-
    Lukáš Petrova S; Vragović M; Pavlova E; Černochová Z; Jäger A; Jäger E; Konefał R
    Pharmaceutics; 2023 Apr; 15(4):. PubMed ID: 37111676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of well-defined amphiphilic block copolymers having phospholipid polymer sequences as a novel biocompatible polymer micelle reagent.
    Yusa S; Fukuda K; Yamamoto T; Ishihara K; Morishima Y
    Biomacromolecules; 2005; 6(2):663-70. PubMed ID: 15762627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chain length dependence of non-surface activity and micellization behavior of cationic amphiphilic diblock copolymers.
    Ghosh A; Yusa S; Matsuoka H; Saruwatari Y
    Langmuir; 2014 Apr; 30(12):3319-28. PubMed ID: 24611761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of PNVP-Based Copolymers with Tunable Thermosensitivity by Sequential Reversible Addition⁻Fragmentation Chain Transfer Copolymerization and Ring-Opening Polymerization.
    Huang YS; Chen JK; Chen T; Huang CF
    Polymers (Basel); 2017 Jun; 9(6):. PubMed ID: 30970910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduced Blood Cell Adhesion on Polypropylene Substrates through a Simple Surface Zwitterionization.
    Chen SH; Chang Y; Ishihara K
    Langmuir; 2017 Jan; 33(2):611-621. PubMed ID: 27802598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox-Initiated Reversible Addition-Fragmentation Chain Transfer (RAFT) Miniemulsion Polymerization of Styrene using PPEGMA-Based Macro-RAFT Agent.
    Park M; Kim K; Mohanty AK; Cho HY; Lee H; Kang Y; Seo B; Lee W; Jeon HB; Paik HJ
    Macromol Rapid Commun; 2020 Oct; 41(20):e2000399. PubMed ID: 32902024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Block Copolymers of Poly(2-oxazoline)s and Poly(meth)acrylates: A Crossover between Cationic Ring-Opening Polymerization (CROP) and Reversible Addition-Fragmentation Chain Transfer (RAFT).
    Krieg A; Weber C; Hoogenboom R; Becer CR; Schubert US
    ACS Macro Lett; 2012 Jun; 1(6):776-779. PubMed ID: 35607103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembled Nanoparticles Based on Block-Copolymers of Poly(2-Deoxy-2-methacrylamido-d-glucose)/Poly(
    Levit M; Vdovchenko A; Dzhuzha A; Zashikhina N; Katernyuk E; Gostev A; Sivtsov E; Lavrentieva A; Tennikova T; Korzhikova-Vlakh E
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34768888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.