These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31720528)
1. Semiconductor-Microbial Mechanism of Selective Dissolution of Chalcocite in Bioleaching. Wu B; Yang X; Wen J; Wang D ACS Omega; 2019 Nov; 4(19):18279-18288. PubMed ID: 31720528 [TBL] [Abstract][Full Text] [Related]
2. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource. Feng S; Yin Y; Yin Z; Zhang H; Zhu D; Tong Y; Yang H Environ Res; 2021 Mar; 194():110702. PubMed ID: 33400950 [TBL] [Abstract][Full Text] [Related]
3. Responses of microbial community to geochemical parameters on vertical depth in bioheap system of low-grade copper sulfide. Li XT; Huang ZS; Huang Y; Jiang Z; Liang ZL; Yin HQ; Zhang GJ; Jia Y; Deng Y; Liu SJ; Jiang CY Sci Total Environ; 2023 Apr; 869():161752. PubMed ID: 36690115 [TBL] [Abstract][Full Text] [Related]
4. Effect of Sodium Chloride on Pyrite Bioleaching and Initial Attachment by Huynh D; Norambuena J; Boldt C; Kaschabek SR; Levicán G; Schlömann M Front Microbiol; 2020; 11():2102. PubMed ID: 33013767 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effect between sulfide mineral and acidophilic bacteria significantly promoted Cr(VI) reduction. Gan M; Li J; Sun S; Ding J; Zhu J; Liu X; Qiu G J Environ Manage; 2018 Aug; 219():84-94. PubMed ID: 29730593 [TBL] [Abstract][Full Text] [Related]
6. Effects of pyrite and sphalerite on population compositions, dynamics and copper extraction efficiency in chalcopyrite bioleaching process. Xiao Y; Liu X; Dong W; Liang Y; Niu J; Gu Y; Ma L; Hao X; Zhang X; Xu Z; Yin H Arch Microbiol; 2017 Jul; 199(5):757-766. PubMed ID: 28260145 [TBL] [Abstract][Full Text] [Related]
7. Mechanism underlying the bioleaching process of LiCoO Wu W; Liu X; Zhang X; Li X; Qiu Y; Zhu M; Tan W J Biosci Bioeng; 2019 Sep; 128(3):344-354. PubMed ID: 31014562 [TBL] [Abstract][Full Text] [Related]
8. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques. Fantauzzi M; Licheri C; Atzei D; Loi G; Elsener B; Rossi G; Rossi A Anal Bioanal Chem; 2011 Oct; 401(7):2237-48. PubMed ID: 21847529 [TBL] [Abstract][Full Text] [Related]
9. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation. Tao H; Dongwei L Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans. Kocaman AT; Cemek M; Edwards KJ Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502 [TBL] [Abstract][Full Text] [Related]
11. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions. Okibe N; Johnson DB Biotechnol Bioeng; 2004 Sep; 87(5):574-83. PubMed ID: 15352055 [TBL] [Abstract][Full Text] [Related]
12. Relationship between bioleaching performance, bacterial community structure and mineralogy in the bioleaching of a copper concentrate in stirred-tank reactors. Spolaore P; Joulian C; Gouin J; Morin D; d'Hugues P Appl Microbiol Biotechnol; 2011 Jan; 89(2):441-8. PubMed ID: 20890755 [TBL] [Abstract][Full Text] [Related]
13. Reactive oxygen species generated in the presence of fine pyrite particles and its implication in thermophilic mineral bioleaching. Jones GC; van Hille RP; Harrison ST Appl Microbiol Biotechnol; 2013 Mar; 97(6):2735-42. PubMed ID: 22584431 [TBL] [Abstract][Full Text] [Related]
14. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution. Liao R; Yang B; Huang X; Hong M; Yu S; Liu S; Wang J; Qiu G Chemosphere; 2021 Sep; 279():130516. PubMed ID: 33878694 [TBL] [Abstract][Full Text] [Related]
15. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching. Mitsunobu S; Zhu M; Takeichi Y; Ohigashi T; Suga H; Jinno M; Makita H; Sakata M; Ono K; Mase K; Takahashi Y Microbes Environ; 2016; 31(1):63-9. PubMed ID: 26947441 [TBL] [Abstract][Full Text] [Related]
16. Synergistic effect of biogenic Fe Panda S; Akcil A; Mishra S; Erust C J Hazard Mater; 2017 Mar; 325():59-70. PubMed ID: 27915100 [TBL] [Abstract][Full Text] [Related]
17. Can Sulfate Be the First Dominant Aqueous Sulfur Species Formed in the Oxidation of Pyrite by Borilova S; Mandl M; Zeman J; Kucera J; Pakostova E; Janiczek O; Tuovinen OH Front Microbiol; 2018; 9():3134. PubMed ID: 30619202 [TBL] [Abstract][Full Text] [Related]
18. Manipulation of pyrite colonization and leaching by iron-oxidizing Acidithiobacillus species. Bellenberg S; Barthen R; Boretska M; Zhang R; Sand W; Vera M Appl Microbiol Biotechnol; 2015 Feb; 99(3):1435-49. PubMed ID: 25381488 [TBL] [Abstract][Full Text] [Related]
19. Extraction of manganese from electrolytic manganese residue by bioleaching. Xin B; Chen B; Duan N; Zhou C Bioresour Technol; 2011 Jan; 102(2):1683-7. PubMed ID: 21050747 [TBL] [Abstract][Full Text] [Related]
20. Bioleaching of tennantite concentrate: influence of microbial community and solution redox potential. Kondo S; Hayashi K; Phann I; Okibe N Front Microbiol; 2023; 14():1339549. PubMed ID: 38260872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]