These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31720531)

  • 1. Air-Stable Aerophobic Polydimethylsiloxane Tube with Efficient Self-Removal of Air Bubbles.
    Park J; Woo S; Kim S; Kim M; Hwang W
    ACS Omega; 2019 Nov; 4(19):18304-18311. PubMed ID: 31720531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas.
    Yong J; Chen F; Huo J; Fang Y; Yang Q; Zhang J; Hou X
    Nanoscale; 2018 Feb; 10(8):3688-3696. PubMed ID: 29340400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast Capture, Collection, and Targeted Transfer of Underwater Gas Bubbles Using Janus-Faced Carbon Cloth Prepared by a Novel and Simple Strategy.
    Tahzibi H; Azizian S; Szunerits S; Boukherroub R
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):45013-45024. PubMed ID: 36149819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles.
    Yong J; Chen F; Fang Y; Huo J; Yang Q; Zhang J; Bian H; Hou X
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39863-39871. PubMed ID: 29067804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene as Barrier to Prevent Volume Increment of Air Bubbles over Silicone Polymer in Aqueous Environment.
    Bartali R; Lamberti A; Bianco S; Pirri CF; Tripathi M; Gottardi G; Speranza G; Iacob E; Pugno N; Laidani N
    Langmuir; 2017 Nov; 33(45):12865-12872. PubMed ID: 29043815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-transport of underwater bubbles on a microholed hydrophobic surface with gradient wettability.
    Chen MY; Jia ZH; Zhang T; Fei YY
    Soft Matter; 2018 Sep; 14(36):7462-7468. PubMed ID: 30175356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic Bubble-Repellent Tubes: Microdimple Arrays Enhance Repellency of Bubbles Inside of Tubes.
    Kamei J; Abe H; Yabu H
    Langmuir; 2017 Jan; 33(2):585-590. PubMed ID: 28029265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures.
    Huang C; Wippold JA; Stratis-Cullum D; Han A
    Biomed Microdevices; 2020 Oct; 22(4):76. PubMed ID: 33090275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture.
    Jiao Y; Lv X; Zhang Y; Li C; Li J; Wu H; Xiao Y; Wu S; Hu Y; Wu D; Chu J
    Nanoscale; 2019 Jan; 11(3):1370-1378. PubMed ID: 30604827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steering air bubbles with an add-on vacuum layer for biopolymer membrane biofabrication in PDMS microfluidics.
    Pham P; Vo T; Luo X
    Lab Chip; 2017 Jan; 17(2):248-255. PubMed ID: 27942655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crucial role of an aerophobic substrate in bubble-propelled nanomotor aggregation.
    Wang T; Zheng M; Wang L; Ji L; Wang S
    Nanotechnology; 2020 Aug; 31(35):355504. PubMed ID: 32403095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous transport of air bubbles on bioinspired superhydrophilic triangular patterns.
    Feng W; Bhushan B
    J Colloid Interface Sci; 2020 Sep; 575():399-405. PubMed ID: 32388286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Underwater Superaerophobic and Superaerophilic Nanoneedles-Structured Meshes for Water/Bubbles Separation: Removing or Collecting Gas Bubbles in Water.
    Yong J; Chen F; Li W; Huo J; Fang Y; Yang Q; Bian H; Hou X
    Glob Chall; 2018 Apr; 2(4):1700133. PubMed ID: 31565330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic ultra-bubble-repellent surfaces based on a self-organized honeycomb film.
    Kamei J; Saito Y; Yabu H
    Langmuir; 2014 Dec; 30(47):14118-22. PubMed ID: 25401223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Bubble Assembling on a Hybrid Superhydrophobic-Superhydrophilic Surface Fabricated by Selective Laser Texturing.
    Sun K; Yang H; Xue W; Cao M; Adeyemi K; Cao Y
    Langmuir; 2018 Nov; 34(44):13203-13209. PubMed ID: 30350683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Air Bubble Bridge-Based Bioinspired Underwater Adhesion.
    Wang Y; Zhang L; Guo Y; Gan Y; Liu G; Zhang D; Chen H
    Small; 2021 Oct; 17(42):e2103423. PubMed ID: 34554641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superaerophilic Wedge-Shaped Channels with Precovered Air Film for Efficient Subaqueous Bubbles/Jet Transportation and Continuous Oxygen Supplementation.
    Liu Z; Zhang H; Han Y; Huang L; Chen Y; Liu J; Wang X; Liu X; Ling S
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23808-23814. PubMed ID: 31252508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bubbles Moving in Blood Flow in a Microchannel Network: The Effect on the Local Hematocrit.
    Bento D; Lopes S; Maia I; Lima R; Miranda JM
    Micromachines (Basel); 2020 Mar; 11(4):. PubMed ID: 32224993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment.
    Chu D; Sun X; Hu Y; Duan JA
    Soft Matter; 2019 Sep; 15(37):7398-7403. PubMed ID: 31464333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.