These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31720623)

  • 1. Acid-base equilibrium of the chromophore counterion results in distinct photoisomerization reactivity in the primary event of proteorhodopsin.
    Chang CF; Kuramochi H; Singh M; Abe-Yoshizumi R; Tsukuda T; Kandori H; Tahara T
    Phys Chem Chem Phys; 2019 Nov; 21(46):25728-25734. PubMed ID: 31720623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins.
    Chang CF; Kuramochi H; Singh M; Abe-Yoshizumi R; Tsukuda T; Kandori H; Tahara T
    Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202111930. PubMed ID: 34670002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FTIR study of the retinal Schiff base and internal water molecules of proteorhodopsin.
    Ikeda D; Furutani Y; Kandori H
    Biochemistry; 2007 May; 46(18):5365-73. PubMed ID: 17428036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteorhodopsin is a light-driven proton pump with variable vectoriality.
    Friedrich T; Geibel S; Kalmbach R; Chizhov I; Ataka K; Heberle J; Engelhard M; Bamberg E
    J Mol Biol; 2002 Aug; 321(5):821-38. PubMed ID: 12206764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoisomerization pathway of the microbial rhodopsin chromophore in solution.
    Sugiura M; Kandori H
    Photochem Photobiol Sci; 2024 Aug; 23(8):1435-1443. PubMed ID: 38886314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin.
    Bühl E; Braun M; Lakatos A; Glaubitz C; Wachtveitl J
    Biol Chem; 2015 Sep; 396(9-10):1109-15. PubMed ID: 26083266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-dependent photoisomerization of retinal in proteorhodopsin.
    Huber R; Köhler T; Lenz MO; Bamberg E; Kalmbach R; Engelhard M; Wachtveitl J
    Biochemistry; 2005 Feb; 44(6):1800-6. PubMed ID: 15697205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the primary photochemistry of proteorhodopsin with femtosecond spectroscopy.
    Rupenyan A; van Stokkum IH; Arents JC; van Grondelle R; Hellingwerf K; Groot ML
    Biophys J; 2008 May; 94(10):4020-30. PubMed ID: 18234812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of the Reactive and Nonreactive Excited States in the Primary Reaction of Rhodopsins: pH Dependence of Femtosecond Absorption of Light-Driven Sodium Ion Pump Rhodopsin KR2.
    Tahara S; Takeuchi S; Abe-Yoshizumi R; Inoue K; Ohtani H; Kandori H; Tahara T
    J Phys Chem B; 2018 May; 122(18):4784-4792. PubMed ID: 29708342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of Electronic State Mixing on the Photoisomerization Time Scale of the Retinal Chromophore.
    Manathunga M; Yang X; Orozco-Gonzalez Y; Olivucci M
    J Phys Chem Lett; 2017 Oct; 8(20):5222-5227. PubMed ID: 28981285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First steps of retinal photoisomerization in proteorhodopsin.
    Lenz MO; Huber R; Schmidt B; Gilch P; Kalmbach R; Engelhard M; Wachtveitl J
    Biophys J; 2006 Jul; 91(1):255-62. PubMed ID: 16603495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast Dynamics of Heliorhodopsins.
    Tahara S; Singh M; Kuramochi H; Shihoya W; Inoue K; Nureki O; Béjà O; Mizutani Y; Kandori H; Tahara T
    J Phys Chem B; 2019 Mar; 123(11):2507-2512. PubMed ID: 30742768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy.
    Rupenyan A; van Stokkum IH; Arents JC; van Grondelle R; Hellingwerf KJ; Groot ML
    J Phys Chem B; 2009 Dec; 113(50):16251-6. PubMed ID: 19928893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of a long-lived photoproduct with a deprotonated Schiff base in proteorhodopsin, and its enhancement by mutation of Asp227.
    Imasheva ES; Shimono K; Balashov SP; Wang JM; Zadok U; Sheves M; Kamo N; Lanyi JK
    Biochemistry; 2005 Aug; 44(32):10828-38. PubMed ID: 16086585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced proton release in proteorhodopsin at low pH: the possibility of a decrease in the pK(a) of Asp227.
    Tamogami J; Kikukawa T; Nara T; Shimono K; Demura M; Kamo N
    Biochemistry; 2012 Nov; 51(46):9290-301. PubMed ID: 23095117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excited-state dynamics of all-trans protonated retinal Schiff base in CRABPII-based rhodopsin mimics.
    Li G; Hu Y; Pei S; Meng J; Wang J; Wang J; Yue S; Wang Z; Wang S; Liu X; Weng Y; Peng X; Zhao Q
    Biophys J; 2022 Nov; 121(21):4109-4118. PubMed ID: 36181266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study.
    Miyahara T; Nakatsuji H
    J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. His-75 in proteorhodopsin, a novel component in light-driven proton translocation by primary pumps.
    Bergo VB; Sineshchekov OA; Kralj JM; Partha R; Spudich EN; Rothschild KJ; Spudich JL
    J Biol Chem; 2009 Jan; 284(5):2836-2843. PubMed ID: 19015272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct QM/MM excited-state dynamics of retinal protonated Schiff base in isolation and methanol solution.
    Punwong C; Owens J; Martínez TJ
    J Phys Chem B; 2015 Jan; 119(3):704-14. PubMed ID: 25178510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoisomerization in proteorhodopsin mutant D97N.
    Lenz MO; Woerner AC; Glaubitz C; Wachtveitl J
    Photochem Photobiol; 2007; 83(2):226-31. PubMed ID: 16808594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.