These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The causal role of the left parietal lobe in facilitation and inhibition of return. Martín-Arévalo E; Lupiáñez J; Narganes-Pineda C; Marino G; Colás I; Chica AB Cortex; 2019 Aug; 117():311-322. PubMed ID: 31185374 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of return following an auditory cue. The role of central reorienting events. Spence C; Driver J Exp Brain Res; 1998 Feb; 118(3):352-60. PubMed ID: 9497142 [TBL] [Abstract][Full Text] [Related]
8. The effect of reward on orienting and reorienting in exogenous cuing. Bucker B; Theeuwes J Cogn Affect Behav Neurosci; 2014 Jun; 14(2):635-46. PubMed ID: 24671762 [TBL] [Abstract][Full Text] [Related]
9. Neural correlates of spatial and non-spatial inhibition of return (IOR) in attentional orienting. Zhou X; Chen Q Neuropsychologia; 2008 Sep; 46(11):2766-75. PubMed ID: 18597795 [TBL] [Abstract][Full Text] [Related]
10. Cue-target onset asynchrony modulates interaction between exogenous attention and audiovisual integration. Xu Z; Yang W; Zhou Z; Ren Y Cogn Process; 2020 May; 21(2):261-270. PubMed ID: 31953644 [TBL] [Abstract][Full Text] [Related]
11. No supplementary evidence of attention to a spatial cue when saccadic facilitation is absent. MacInnes WJ; Bhatnagar R Sci Rep; 2018 Sep; 8(1):13289. PubMed ID: 30185930 [TBL] [Abstract][Full Text] [Related]
12. On the time course of spatial cueing: Dissociating between a set for fast reorienting and a set for cue-target segregation. Martín-Arévalo E; Funes MJ; Lupiáñez J Acta Psychol (Amst); 2020 Feb; 203():103004. PubMed ID: 31935658 [TBL] [Abstract][Full Text] [Related]
14. Inhibitory interaction: the effects of multiple non-predictive visual cues. Visser TA; Barnes D Psychol Res; 2010 Nov; 74(6):532-44. PubMed ID: 20182742 [TBL] [Abstract][Full Text] [Related]
15. Orienting of attention without awareness is affected by measurement-induced attentional control settings. Ivanoff J; Klein RM J Vis; 2003; 3(1):32-40. PubMed ID: 12678623 [TBL] [Abstract][Full Text] [Related]
16. The role of top-down spatial attention in contingent attentional capture. Huang W; Su Y; Zhen Y; Qu Z Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628 [TBL] [Abstract][Full Text] [Related]
17. Electrophysiological explorations of the cause and effect of inhibition of return in a cue-target paradigm. Tian Y; Klein RM; Satel J; Xu P; Yao D Brain Topogr; 2011 Jun; 24(2):164-82. PubMed ID: 21365310 [TBL] [Abstract][Full Text] [Related]
18. The roles of feature-specific task set and bottom-up salience in attentional capture: an ERP study. Eimer M; Kiss M; Press C; Sauter D J Exp Psychol Hum Percept Perform; 2009 Oct; 35(5):1316-28. PubMed ID: 19803639 [TBL] [Abstract][Full Text] [Related]
19. The processes of facilitation and inhibition in a cue-target paradigm: insight from movement trajectory deviations. Neyedli HF; Welsh TN Acta Psychol (Amst); 2012 Jan; 139(1):159-65. PubMed ID: 22133725 [TBL] [Abstract][Full Text] [Related]
20. Placeholders dissociate two forms of inhibition of return. Hilchey MD; Pratt J; Christie J Q J Exp Psychol (Hove); 2018 Feb; 71(2):360-371. PubMed ID: 27737621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]