These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31720857)

  • 21. A comparative study of satellite and ground-based phenology.
    Studer S; Stöckli R; Appenzeller C; Vidale PL
    Int J Biometeorol; 2007 May; 51(5):405-14. PubMed ID: 17235537
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amphibian breeding phenology trends under climate change: predicting the past to forecast the future.
    Green DM
    Glob Chang Biol; 2017 Feb; 23(2):646-656. PubMed ID: 27273300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA.
    Pearson KD
    Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shifting and extension of phenological periods with increasing temperature along elevational transects in southern Bavaria.
    Schuster C; Estrella N; Menzel A
    Plant Biol (Stuttg); 2014 Mar; 16(2):332-44. PubMed ID: 23957276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China.
    Chen X; Xu L
    Int J Biometeorol; 2012 Jul; 56(4):695-706. PubMed ID: 21805230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.
    Melaas EK; Friedl MA; Richardson AD
    Glob Chang Biol; 2016 Feb; 22(2):792-805. PubMed ID: 26456080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulation of forest tree species' bud burst dates for different climate scenarios: chilling requirements and photo-period may limit bud burst advancement.
    Lange M; Schaber J; Marx A; Jäckel G; Badeck FW; Seppelt R; Doktor D
    Int J Biometeorol; 2016 Nov; 60(11):1711-1726. PubMed ID: 27059366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Autumn bird migration phenology: A potpourri of wind, precipitation and temperature effects.
    Haest B; Hüppop O; van de Pol M; Bairlein F
    Glob Chang Biol; 2019 Dec; 25(12):4064-4080. PubMed ID: 31273866
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variability and evolution of global land surface phenology over the past three decades (1982-2012).
    Garonna I; de Jong R; Schaepman ME
    Glob Chang Biol; 2016 Apr; 22(4):1456-68. PubMed ID: 26924776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Climate-Driven Phenological Change: Developing Robust Spatiotemporal Modeling and Projection Capability.
    Prieto C; Destouni G
    PLoS One; 2015; 10(11):e0141207. PubMed ID: 26545112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temporal coherence of phenological and climatic rhythmicity in Beijing.
    Chen X; Zhang W; Ren S; Lang W; Liang B; Liu G
    Int J Biometeorol; 2017 Oct; 61(10):1733-1748. PubMed ID: 28466416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regional unified model-based leaf unfolding prediction from 1960 to 2009 across northern China.
    Xu L; Chen X
    Glob Chang Biol; 2013 Apr; 19(4):1275-84. PubMed ID: 23504902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The phenological calendar of Estonia and its correlation with mean air temperature.
    Ahas R; Jaagus J; Aasa A
    Int J Biometeorol; 2000 Nov; 44(4):159-66. PubMed ID: 11131286
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Consistent temperature-dependent patterns of leaf lifespan across spatial and temporal gradients for deciduous trees in Europe.
    Xia X; Pan Y; Chang M; Wu D; Zhang X; Xia J; Song K
    Sci Total Environ; 2022 May; 820():153175. PubMed ID: 35051451
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phenological sensitivity and seasonal variability explain climate-driven trends in Mediterranean butterflies.
    Colom P; Ninyerola M; Pons X; Traveset A; Stefanescu C
    Proc Biol Sci; 2022 Apr; 289(1973):20220251. PubMed ID: 35473386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Parameterization of temperature sensitivity of spring phenology and its application in explaining diverse phenological responses to temperature change.
    Wang H; Ge Q; Rutishauser T; Dai Y; Dai J
    Sci Rep; 2015 Mar; 5():8833. PubMed ID: 25743934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plant phenological synchrony increases under rapid within-spring warming.
    Wang C; Tang Y; Chen J
    Sci Rep; 2016 May; 6():25460. PubMed ID: 27145698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Herbarium records are reliable sources of phenological change driven by climate and provide novel insights into species' phenological cueing mechanisms.
    Davis CC; Willis CG; Connolly B; Kelly C; Ellison AM
    Am J Bot; 2015 Oct; 102(10):1599-609. PubMed ID: 26451038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.