BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31720863)

  • 1. A Framework for Automatic Morphological Feature Extraction and Analysis of Abdominal Organs in MRI Volumes.
    Asaturyan H; Thomas EL; Bell JD; Villarini B
    J Med Syst; 2019 Nov; 43(12):334. PubMed ID: 31720863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological and multi-level geometrical descriptor analysis in CT and MRI volumes for automatic pancreas segmentation.
    Asaturyan H; Gligorievski A; Villarini B
    Comput Med Imaging Graph; 2019 Jul; 75():1-13. PubMed ID: 31103856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning.
    Zhou X; Wang S; Chen H; Hara T; Yokoyama R; Kanematsu M; Fujita H
    Comput Med Imaging Graph; 2012 Jun; 36(4):304-13. PubMed ID: 22421130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A segmentation framework for abdominal organs from CT scans.
    Campadelli P; Casiraghi E; Pratissoli S
    Artif Intell Med; 2010 Sep; 50(1):3-11. PubMed ID: 20542673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
    Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM
    Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
    Hu P; Wu F; Peng J; Bao Y; Chen F; Kong D
    Int J Comput Assist Radiol Surg; 2017 Mar; 12(3):399-411. PubMed ID: 27885540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic segmentation methods for liver and hepatic vessels from CT and MRI volumes, applied to the Couinaud scheme.
    Lebre MA; Vacavant A; Grand-Brochier M; Rositi H; Abergel A; Chabrot P; Magnin B
    Comput Biol Med; 2019 Jul; 110():42-51. PubMed ID: 31121506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity.
    Shen J; Baum T; Cordes C; Ott B; Skurk T; Kooijman H; Rummeny EJ; Hauner H; Menze BH; Karampinos DC
    Eur J Radiol; 2016 Sep; 85(9):1613-21. PubMed ID: 27501897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The role of 3-D imaging and computer-based postprocessing for surgery of the liver and pancreas].
    Grenacher L; Thorn M; Knaebel HP; Vetter M; Hassenpflug P; Kraus T; Meinzer HP; Büchler MW; Kauffmann GW; Richter GM
    Rofo; 2005 Sep; 177(9):1219-26. PubMed ID: 16123867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variability of target and normal structure delineation using multimodality imaging for radiation therapy of pancreatic cancer.
    Dalah E; Moraru I; Paulson E; Erickson B; Li XA
    Int J Radiat Oncol Biol Phys; 2014 Jul; 89(3):633-40. PubMed ID: 24755533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automatic scheme for measuring liver volume in 3D MR images.
    Le TN; Bao PT; Huynh HT
    Biomed Mater Eng; 2015; 26 Suppl 1():S1361-9. PubMed ID: 26405897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.
    He B; Huang C; Sharp G; Zhou S; Hu Q; Fang C; Fan Y; Jia F
    Med Phys; 2016 May; 43(5):2421. PubMed ID: 27147353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Volume Assessment of Hepatocellular Carcinoma in Rat Livers Using a Clinical 3T MRI and Novel Segmentation.
    Orci LA; Oldani G; Lacotte S; Slits F; Friedli I; Wirth W; Toso C; Vallée JP; Crowe LA
    J Invest Surg; 2018 Feb; 31(1):44-53. PubMed ID: 28107094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Breast volume assessment based on 3D surface geometry: verification of the method using MR imaging].
    Eder M; Schneider A; Feussner H; Zimmermann A; Höhnke C; Papadopulos NA; Kovacs L
    Biomed Tech (Berl); 2008 Jun; 53(3):112-21. PubMed ID: 18601619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 3D reconstructions of female pelvic autonomic nerves and their related organs based on MRI: a first step towards neuronavigation during nerve-sparing radical hysterectomy.
    Li P; Liu P; Chen C; Duan H; Qiao W; Ognami OH
    Eur Radiol; 2018 Nov; 28(11):4561-4569. PubMed ID: 29728818
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic 3D liver location and segmentation via convolutional neural network and graph cut.
    Lu F; Wu F; Hu P; Peng Z; Kong D
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):171-182. PubMed ID: 27604760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation.
    Linguraru MG; Sandberg JK; Li Z; Shah F; Summers RM
    Med Phys; 2010 Feb; 37(2):771-83. PubMed ID: 20229887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D ultrasound measurement of large organ volume.
    Treece G; Prager R; Gee A; Berman L
    Med Image Anal; 2001 Mar; 5(1):41-54. PubMed ID: 11231176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of surface motion patterns in highly deformable soft tissue organs from dynamic MRI: An application to assess 4D bladder motion.
    Makki K; Bohi A; Ogier AC; Bellemare ME
    Comput Methods Programs Biomed; 2022 May; 218():106708. PubMed ID: 35245782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.