These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31720906)

  • 1. Using Tools from Optogenetics to Create Light-Responsive Biomaterials: LOVTRAP-PEG Hydrogels for Dynamic Peptide Immobilization.
    Hammer JA; Ruta A; West JL
    Ann Biomed Eng; 2020 Jul; 48(7):1885-1894. PubMed ID: 31720906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LOVTRAP: A Versatile Method to Control Protein Function with Light.
    Wang H; Hahn KM
    Curr Protoc Cell Biol; 2016 Dec; 73():21.10.1-21.10.14. PubMed ID: 27906450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Responsive Dynamic Protein Hydrogels Based on LOVTRAP.
    Duan T; Bian Q; Li H
    Langmuir; 2021 Aug; 37(33):10214-10222. PubMed ID: 34396769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Open-Closed Structure of Light-Responsive Protein LOV2 Regulates Its Molecular Interaction with a Binding Partner.
    Younas T; Vidallon MLP; Tabor RF; He L
    J Phys Chem Lett; 2020 Oct; 11(20):8647-8653. PubMed ID: 32945680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bio-orthogonal conjugation and enzymatically triggered release of proteins within multi-layered hydrogels.
    Guo C; Kim H; Ovadia EM; Mourafetis CM; Yang M; Chen W; Kloxin AM
    Acta Biomater; 2017 Jul; 56():80-90. PubMed ID: 28391052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adding Dynamic Biomolecule Signaling to Hydrogel Systems via Tethered Photolabile Cell-Adhesive Proteins.
    Chapla R; Hammer JA; West JL
    ACS Biomater Sci Eng; 2022 Jan; 8(1):208-217. PubMed ID: 34870965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Hydrogels with Reversibly Patterned Multidimensional Fluorescent Images for Information Storage.
    Duan T; Bian Q; Li H
    Biomacromolecules; 2022 Jul; 23(7):3009-3016. PubMed ID: 35749455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels.
    Zhang C; Zhang N; Wen X
    J Biomed Mater Res A; 2007 Sep; 82(3):637-50. PubMed ID: 17323316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Immobilization of Fluorescent Proteins for the Fabrication of Photoactive Materials.
    Benítez-Mateos AI; Mehravar E; Velasco-Lozano S; ; Salassa L; López-Gallego F
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31366154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels.
    Leslie-Barbick JE; Moon JJ; West JL
    J Biomater Sci Polym Ed; 2009; 20(12):1763-79. PubMed ID: 19723440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein diffusion characteristics in the hydrogels of poly(ethylene glycol) and zwitterionic poly(sulfobetaine methacrylate) (pSBMA).
    Wu J; Xiao Z; He C; Zhu J; Ma G; Wang G; Zhang H; Xiao J; Chen S
    Acta Biomater; 2016 Aug; 40():172-181. PubMed ID: 27142255
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Optogenetic Protein Analogs.
    Liu B; Marston DJ; Hahn KM
    Methods Mol Biol; 2020; 2173():113-126. PubMed ID: 32651913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of stiffness-tunable and cell-responsive Gelatin-poly(ethylene glycol) hydrogel for three-dimensional cell encapsulation.
    Cao Y; Lee BH; Peled HB; Venkatraman SS
    J Biomed Mater Res A; 2016 Oct; 104(10):2401-11. PubMed ID: 27170015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Well-defined and biocompatible hydrogels with toughening and reversible photoresponsive properties.
    Sun Z; Liu S; Li K; Tan L; Cen L; Fu G
    Soft Matter; 2016 Feb; 12(7):2192-9. PubMed ID: 26744299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional pattering of poly (ethylene Glycol) hydrogels through surface-initiated photopolymerization.
    Papavasiliou G; Songprawat P; Pérez-Luna V; Hammes E; Morris M; Chiu YC; Brey E
    Tissue Eng Part C Methods; 2008 Jun; 14(2):129-40. PubMed ID: 18471086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineer RNA-Protein Nanowires as Light-Responsive Biomaterials.
    Younas T; Liu C; Struwe WB; Kukura P; He L
    Small; 2023 Mar; 19(12):e2206513. PubMed ID: 36642821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic Navigation of Routes Leading to Protein Amyloidogenesis in Bacteria.
    Giraldo R
    J Mol Biol; 2019 Mar; 431(6):1186-1202. PubMed ID: 30721672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-stimuli-responsive degradation of hydrogels consisting of oligopeptide-terminated poly(ethylene glycol) and dextran with an interpenetrating polymer network.
    Kurisawa M; Terano M; Yui N
    J Biomater Sci Polym Ed; 1997; 8(9):691-708. PubMed ID: 9257182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.