BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31722036)

  • 1. Multi-stage automated local arterial input function selection in perfusion MRI.
    Tabbara R; Connelly A; Calamante F
    MAGMA; 2020 Jun; 33(3):357-365. PubMed ID: 31722036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of an automated method for arterial input function detection for first-pass myocardial perfusion cardiovascular magnetic resonance.
    Jacobs M; Benovoy M; Chang LC; Arai AE; Hsu LY
    J Cardiovasc Magn Reson; 2016 Apr; 18():17. PubMed ID: 27055445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated detection of the arterial input function using normalized cut clustering to determine cerebral perfusion by dynamic susceptibility contrast-magnetic resonance imaging.
    Yin J; Sun H; Yang J; Guo Q
    J Magn Reson Imaging; 2015 Apr; 41(4):1071-8. PubMed ID: 24753102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated perfusion-weighted MRI using localized arterial input functions.
    Lorenz C; Benner T; Chen PJ; Lopez CJ; Ay H; Zhu MW; Menezes NM; Aronen H; Karonen J; Liu Y; Nuutinen J; Sorensen AG
    J Magn Reson Imaging; 2006 Nov; 24(5):1133-9. PubMed ID: 16969793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimising the effects of bolus dispersion in bolus-tracking MRI.
    Willats L; Connelly A; Calamante F
    NMR Biomed; 2008 Nov; 21(10):1126-37. PubMed ID: 18727165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blind deconvolution estimation of an arterial input function for small animal DCE-MRI.
    Jiřík R; Taxt T; Macíček O; Bartoš M; Kratochvíla J; Souček K; Dražanová E; Krátká L; Hampl A; Starčuk Z
    Magn Reson Imaging; 2019 Oct; 62():46-56. PubMed ID: 31150814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward fully automated processing of dynamic susceptibility contrast perfusion MRI for acute ischemic cerebral stroke.
    Kim J; Leira EC; Callison RC; Ludwig B; Moritani T; Magnotta VA; Madsen MT
    Comput Methods Programs Biomed; 2010 May; 98(2):204-13. PubMed ID: 20060614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arterial input function in perfusion MRI: a comprehensive review.
    Calamante F
    Prog Nucl Magn Reson Spectrosc; 2013 Oct; 74():1-32. PubMed ID: 24083460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reference-based maximum upslope: a CBF quantification method without using arterial input function in dynamic susceptibility contrast MRI.
    Kimura T; Kusahara H
    Magn Reson Med Sci; 2009; 8(3):107-20. PubMed ID: 19783874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining a local arterial input function for perfusion MRI using independent component analysis.
    Calamante F; Mørup M; Hansen LK
    Magn Reson Med; 2004 Oct; 52(4):789-97. PubMed ID: 15389944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partial volume effect (PVE) on the arterial input function (AIF) in T1-weighted perfusion imaging and limitations of the multiplicative rescaling approach.
    Hansen AE; Pedersen H; Rostrup E; Larsson HB
    Magn Reson Med; 2009 Oct; 62(4):1055-9. PubMed ID: 19672948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation resilient AIF estimation based on hierarchical Bayesian modelling for first pass myocardial perfusion MRI.
    Schmid VJ; Gatehouse PD; Yang GZ
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):393-400. PubMed ID: 18051083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correcting the effects of background microcirculation in the measurement of arterial input functions using dynamic susceptibility contrast MRI of the brain.
    Thornton RJ; Jones JY; Wang ZJ
    Magn Reson Imaging; 2006 Jun; 24(5):619-23. PubMed ID: 16735184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved reliability of perfusion estimation in dynamic susceptibility contrast MRI by using the arterial input function from dynamic contrast enhanced MRI.
    Tseng CH; Jaspers J; Romero AM; Wielopolski P; Smits M; van Osch MJP; Vos F
    NMR Biomed; 2024 Jan; 37(1):e5038. PubMed ID: 37712359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validating a local Arterial Input Function method for improved perfusion quantification in stroke.
    Willats L; Christensen S; Ma HK; Donnan GA; Connelly A; Calamante F
    J Cereb Blood Flow Metab; 2011 Nov; 31(11):2189-98. PubMed ID: 21629260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral blood flow estimation from perfusion-weighted MRI using FT-based MMSE filtering method.
    Sakoglu U; Sood R
    Magn Reson Imaging; 2008 Apr; 26(3):313-22. PubMed ID: 18158225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-based arterial input function measurements for dynamic susceptibility contrast MRI.
    Bleeker EJ; van Buchem MA; Webb AG; van Osch MJ
    Magn Reson Med; 2010 Aug; 64(2):358-68. PubMed ID: 20665779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arterial input function segmentation based on a contour geodesic model for tissue at risk identification in ischemic stroke.
    Bal SS; Chen K; Yang FG; Peng GS
    Med Phys; 2022 Apr; 49(4):2475-2485. PubMed ID: 35098544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Intravascular Signal Arterial Transit Time Artifacts Have Negligible Effects on Cerebral Blood Flow and Cerebrovascular Reserve Capacity Measurement Using Single Postlabel Delay Arterial Spin-Labeling in Patients with Moyamoya Disease.
    Fahlström M; Lewén A; Enblad P; Larsson EM; Wikström J
    AJNR Am J Neuroradiol; 2020 Mar; 41(3):430-436. PubMed ID: 32115416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI.
    Mehndiratta A; MacIntosh BJ; Crane DE; Payne SJ; Chappell MA
    Neuroimage; 2013 Jan; 64():560-70. PubMed ID: 22975158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.