BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 3172213)

  • 1. Influence of DNA sequence and supercoiling on the process of cruciform formation.
    Courey AJ; Wang JC
    J Mol Biol; 1988 Jul; 202(1):35-43. PubMed ID: 3172213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions.
    Courey AJ; Wang JC
    Cell; 1983 Jul; 33(3):817-29. PubMed ID: 6871994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow cruciform transitions in palindromic DNA.
    Gellert M; O'Dea MH; Mizuuchi K
    Proc Natl Acad Sci U S A; 1983 Sep; 80(18):5545-9. PubMed ID: 6577442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perfect palindromic lac operator DNA sequence exists as a stable cruciform structure in supercoiled DNA in vitro but not in vivo.
    Sinden RR; Broyles SS; Pettijohn DE
    Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1797-801. PubMed ID: 6340109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of salts, temperature, and stem length on supercoil-induced formation of cruciforms.
    Singleton CK
    J Biol Chem; 1983 Jun; 258(12):7661-8. PubMed ID: 6863259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of base composition at the center of inverted repeated DNA sequences on cruciform transitions in DNA.
    Zheng GX; Sinden RR
    J Biol Chem; 1988 Apr; 263(11):5356-61. PubMed ID: 3356690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA.
    Panyutin I; Klishko V; Lyamichev V
    J Biomol Struct Dyn; 1984 Jun; 1(6):1311-24. PubMed ID: 6400822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrusion of an imperfect palindrome to a cruciform in superhelical DNA: complete determination of energetics using a statistical mechanical model.
    Benham CJ; Savitt AG; Bauer WR
    J Mol Biol; 2002 Feb; 316(3):563-81. PubMed ID: 11866518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The physical chemistry of cruciform structures in supercoiled DNA molecules.
    Lilley DM; Gough GW; Hallam LR; Sullivan KM
    Biochimie; 1985; 67(7-8):697-706. PubMed ID: 3002491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cruciform extrusion in plasmids bearing the replicative intermediate configuration of a poxvirus telomere.
    Dickie P; Morgan AR; McFadden G
    J Mol Biol; 1987 Aug; 196(3):541-58. PubMed ID: 2824785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cruciform structures in palindromic DNA are favored by DNA supercoiling.
    Mizuuchi K; Mizuuchi M; Gellert M
    J Mol Biol; 1982 Apr; 156(2):229-43. PubMed ID: 6283098
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of magnesium on cruciform extrusion in supercoiled DNA.
    Vologodskaia MY; Vologodskii AV
    J Mol Biol; 1999 Jun; 289(4):851-9. PubMed ID: 10369766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Formation of cruciform structures in pAO3 plasmid DNA on increasing superhelical density].
    Paniutin IG; Liamichev VI; Liubchenko IuL
    Mol Biol (Mosk); 1983; 17(3):667-77. PubMed ID: 6308419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuations in superhelical DNA.
    Vologodskii AV; Lukashin AV; Anshelevich VV; Frank-Kamenetskii MD
    Nucleic Acids Res; 1979 Mar; 6(3):967-82. PubMed ID: 155809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal protein HMG1 removes the transcriptional block caused by the cruciform in supercoiled DNA.
    Waga S; Mizuno S; Yoshida M
    J Biol Chem; 1990 Nov; 265(32):19424-8. PubMed ID: 1700977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells.
    Zheng GX; Kochel T; Hoepfner RW; Timmons SE; Sinden RR
    J Mol Biol; 1991 Sep; 221(1):107-22. PubMed ID: 1920399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between superhelical density and cruciform formation in plasmid pVH51.
    Singleton CK; Wells RD
    J Biol Chem; 1982 Jun; 257(11):6292-5. PubMed ID: 6281266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene.
    Greaves DR; Patient RK; Lilley DM
    J Mol Biol; 1985 Oct; 185(3):461-78. PubMed ID: 2997451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of global DNA topology on cruciform formation in supercoiled DNA.
    Oussatcheva EA; Pavlicek J; Sankey OF; Sinden RR; Lyubchenko YL; Potaman VN
    J Mol Biol; 2004 May; 338(4):735-43. PubMed ID: 15099741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription regulation in vitro by an E. coli promoter containing a DNA cruciform in the '-35' region.
    Horwitz MS
    Nucleic Acids Res; 1989 Jul; 17(14):5537-45. PubMed ID: 2668890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.