BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31722246)

  • 1. Metabolic engineering of Synechocystis sp. PCC 6803 for the production of aromatic amino acids and derived phenylpropanoids.
    Brey LF; Włodarczyk AJ; Bang Thøfner JF; Burow M; Crocoll C; Nielsen I; Zygadlo Nielsen AJ; Jensen PE
    Metab Eng; 2020 Jan; 57():129-139. PubMed ID: 31722246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of phenylalanine ammonia lyases in Synechocystis sp. PCC 6803 and subsequent improvements of sustainable production of phenylpropanoids.
    Kukil K; Lindberg P
    Microb Cell Fact; 2022 Jan; 21(1):8. PubMed ID: 35012528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering of Synechocystis sp. PCC 6803 for the improved production of phenylpropanoids.
    Kukil K; Lindberg P
    Microb Cell Fact; 2024 Feb; 23(1):57. PubMed ID: 38369470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Random Mutagenesis and Metabolic Engineering for Enhanced Tryptophan Production in
    Deshpande A; Vue J; Morgan J
    Appl Environ Microbiol; 2020 Apr; 86(9):. PubMed ID: 32144109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory evolution of Synechocystis sp. PCC 6803 for phenylpropanoid production.
    Kukil K; Englund E; Crang N; Hudson EP; Lindberg P
    Metab Eng; 2023 Sep; 79():27-37. PubMed ID: 37392984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered xylose utilization enhances bio-products productivity in the cyanobacterium Synechocystis sp. PCC 6803.
    Lee TC; Xiong W; Paddock T; Carrieri D; Chang IF; Chiu HF; Ungerer J; Hank Juo SH; Maness PC; Yu J
    Metab Eng; 2015 Jul; 30():179-189. PubMed ID: 26079651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine.
    Kim B; Binkley R; Kim HU; Lee SY
    Biotechnol Bioeng; 2018 Oct; 115(10):2554-2564. PubMed ID: 30019750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-induced production of isobutanol and 3-methyl-1-butanol by metabolically engineered cyanobacteria.
    Kobayashi S; Atsumi S; Ikebukuro K; Sode K; Asano R
    Microb Cell Fact; 2022 Jan; 21(1):7. PubMed ID: 34991586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic engineering of Escherichia coli for the biosynthesis of various phenylpropanoid derivatives.
    Wang S; Zhang S; Xiao A; Rasmussen M; Skidmore C; Zhan J
    Metab Eng; 2015 May; 29():153-159. PubMed ID: 25819309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a switchable synthetic Escherichia coli for aromatic amino acids by a tunable switch.
    Liu X; Niu H; Huang Z; Li Q; Gu P
    J Ind Microbiol Biotechnol; 2020 Feb; 47(2):233-242. PubMed ID: 31989326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic production of enantioselective biocatalysts.
    Bartsch M; Gassmeyer SK; Köninger K; Igarashi K; Liauw P; Dyczmons-Nowaczyk N; Miyamoto K; Nowaczyk MM; Kourist R
    Microb Cell Fact; 2015 Apr; 14():53. PubMed ID: 25889799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain.
    Kang SY; Choi O; Lee JK; Hwang BY; Uhm TB; Hong YS
    Microb Cell Fact; 2012 Dec; 11():153. PubMed ID: 23206756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of platform chemical 3-hydroxypropionic acid (3-HP) directly from CO2 in cyanobacterium Synechocystis sp. PCC 6803.
    Wang Y; Sun T; Gao X; Shi M; Wu L; Chen L; Zhang W
    Metab Eng; 2016 Mar; 34():60-70. PubMed ID: 26546088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2.
    Wang B; Pugh S; Nielsen DR; Zhang W; Meldrum DR
    Metab Eng; 2013 Mar; 16():68-77. PubMed ID: 23333586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of enhanced glycerol-3-phosphate synthesis to increase lipid production in Synechocystis sp. PCC 6803.
    Wang X; Xiong X; Sa N; Roje S; Chen S
    Appl Microbiol Biotechnol; 2016 Jul; 100(13):6091-101. PubMed ID: 27154348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expressing 2-keto acid pathway enzymes significantly increases photosynthetic isobutanol production.
    Xie H; Lindblad P
    Microb Cell Fact; 2022 Feb; 21(1):17. PubMed ID: 35105340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome Engineering To Generate Plasmid-Free Phenylalanine- and Tyrosine-Overproducing
    Koma D; Kishida T; Yoshida E; Ohashi H; Yamanaka H; Moriyoshi K; Nagamori E; Ohmoto T
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of enhanced acetate influx on Synechocystis sp. PCC 6803 metabolism.
    Thiel K; Vuorio E; Aro EM; Kallio PT
    Microb Cell Fact; 2017 Feb; 16(1):21. PubMed ID: 28153019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of recombinant Escherichia coli for production of L-phenylalanine-derived compounds.
    Liu L; Liu X; Ma Q; Li Q; Gu P
    World J Microbiol Biotechnol; 2021 Apr; 37(5):84. PubMed ID: 33855641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of tyrosine through phenylalanine hydroxylation bypasses the intrinsic feedback inhibition in Escherichia coli.
    Huang J; Lin Y; Yuan Q; Yan Y
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):655-9. PubMed ID: 25645094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.