These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31722262)

  • 1. Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems.
    Hou J; Huang L; Zhou P; Qian Y; Li N
    Chemosphere; 2020 Mar; 243():125317. PubMed ID: 31722262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of Cu(II) and simultaneous production of acetate from inorganic carbon by Serratia Marcescens biofilms and plankton cells in microbial electrosynthesis systems.
    Qian Y; Huang L; Zhou P; Tian F; Puma GL
    Sci Total Environ; 2019 May; 666():114-125. PubMed ID: 30798222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent probe based subcellular distribution of Cu(II) ions in living electrotrophs isolated from Cu(II)-reduced biocathodes of microbial fuel cells.
    Tao Y; Xue H; Huang L; Zhou P; Yang W; Quan X; Yuan J
    Bioresour Technol; 2017 Feb; 225():316-325. PubMed ID: 27907871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrosynthesis of acetate from inorganic carbon (HCO
    Hou X; Huang L; Zhou P; Tian F; Tao Y; Li Puma G
    J Hazard Mater; 2019 Jun; 371():463-473. PubMed ID: 30875574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An external magnetic field moderating Cr(VI) stress for simultaneous enhanced acetate production and Cr(VI) removal in microbial electrosynthesis system.
    Sun S; Huang L; Song X; Zhou P
    Environ Res; 2021 Feb; 193():110550. PubMed ID: 33271144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between circuital current, Cu(II) reduction and cellular electron transfer in EAB isolated from Cu(II)-reduced biocathodes of microbial fuel cells.
    Shen J; Huang L; Zhou P; Quan X; Puma GL
    Bioelectrochemistry; 2017 Apr; 114():1-7. PubMed ID: 27835761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purposely Designed Hierarchical Porous Electrodes for High Rate Microbial Electrosynthesis of Acetate from Carbon Dioxide.
    Flexer V; Jourdin L
    Acc Chem Res; 2020 Feb; 53(2):311-321. PubMed ID: 31990521
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased carbon dioxide reduction to acetate in a microbial electrosynthesis reactor with a reduced graphene oxide-coated copper foam composite cathode.
    Aryal N; Wan L; Overgaard MH; Stoot AC; Chen Y; Tremblay PL; Zhang T
    Bioelectrochemistry; 2019 Aug; 128():83-93. PubMed ID: 30959398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of microbial products in the biosorption process of Cu(II) onto aerobic granular sludge: Extracellular polymeric substances contribution and soluble microbial products release.
    Huang L; Li M; Si G; Wei J; Ngo HH; Guo W; Xu W; Du B; Wei Q; Wei D
    J Colloid Interface Sci; 2018 Oct; 527():87-94. PubMed ID: 29783142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High efficiency microbial electrosynthesis of acetate from carbon dioxide by a self-assembled electroactive biofilm.
    Song TS; Zhang H; Liu H; Zhang D; Wang H; Yang Y; Yuan H; Xie J
    Bioresour Technol; 2017 Nov; 243():573-582. PubMed ID: 28704738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of primary precipitate composition formed during co-removal of Cr(VI) with Cu(II) in synthetic wastewater.
    Sun JM; Zhu WT; Huang JC
    Environ Sci Pollut Res Int; 2006 Oct; 13(6):379-85. PubMed ID: 17120827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dominance of sphingomonads in a copper-exposed biofilm community for groundwater treatment.
    Vílchez R; Pozo C; Gómez MA; Rodelas B; González-López J
    Microbiology (Reading); 2007 Feb; 153(Pt 2):325-337. PubMed ID: 17259604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane.
    Xiang Y; Liu G; Zhang R; Lu Y; Luo H
    Bioresour Technol; 2017 Jun; 233():227-235. PubMed ID: 28282609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical and microbial community responses of electrochemically active biofilms to copper ions in bioelectrochemical systems.
    Zhang Y; Li G; Wen J; Xu Y; Sun J; Ning XA; Lu X; Wang Y; Yang Z; Yuan Y
    Chemosphere; 2018 Apr; 196():377-385. PubMed ID: 29316463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source.
    Izadi P; Fontmorin JM; Godain A; Yu EH; Head IM
    NPJ Biofilms Microbiomes; 2020 Oct; 6(1):40. PubMed ID: 33056998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetate production and electron utilization facilitated by sulfate-reducing bacteria in a microbial electrosynthesis system.
    Xiang Y; Liu G; Zhang R; Lu Y; Luo H
    Bioresour Technol; 2017 Oct; 241():821-829. PubMed ID: 28628986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of emerging environmental contaminants on Stenotrophomonas maltophilia isolated from drinking water in planktonic and sessile states.
    Gomes IB; Simões LC; Simões M
    Sci Total Environ; 2018 Dec; 643():1348-1356. PubMed ID: 30189551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell.
    Wu Y; Wang L; Jin M; Kong F; Qi H; Nan J
    Bioresour Technol; 2019 Jul; 283():129-137. PubMed ID: 30901585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous geopolymeric spheres for removal of Cu(II) from aqueous solution: synthesis and evaluation.
    Ge Y; Cui X; Kong Y; Li Z; He Y; Zhou Q
    J Hazard Mater; 2015; 283():244-51. PubMed ID: 25282176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and equilibrium of desorption removal of copper from magnetic polymer adsorbent.
    Tseng JY; Chang CY; Chang CF; Chen YH; Chang CC; Ji DR; Chiu CY; Chiang PC
    J Hazard Mater; 2009 Nov; 171(1-3):370-7. PubMed ID: 19595507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.