BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31722321)

  • 1. Robustness analysis of decoding SSVEPs in humans with head movements using a moving visual flicker.
    Kanoga S; Nakanishi M; Murai A; Tada M; Kanemura A
    J Neural Eng; 2019 Dec; 17(1):016009. PubMed ID: 31722321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Effect of Muscle Artifact Reduction Methods on Few-channel SSVEPs during Head Movements.
    Namura N; Kanoga S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas.
    Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials.
    Waytowich N; Lawhern VJ; Garcia JO; Cummings J; Faller J; Sajda P; Vettel JM
    J Neural Eng; 2018 Dec; 15(6):066031. PubMed ID: 30279309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs).
    Gregori Grgič R; Calore E; de'Sperati C
    Cortex; 2016 Jan; 74():31-52. PubMed ID: 26615517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of higher frequency on the classification of steady-state visual evoked potentials.
    Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW
    J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events.
    Wu Y; Li M; Wang J
    J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI.
    Sakurada T; Kawase T; Komatsu T; Kansaku K
    Clin Neurophysiol; 2015 Oct; 126(10):1972-8. PubMed ID: 25577407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A data expansion technique based on training and testing sample to boost the detection of SSVEPs for brain-computer interfaces.
    Xiao X; Wang L; Xu M; Wang K; Jung TP; Ming D
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37683663
    [No Abstract]   [Full Text] [Related]  

  • 15. Highly Interactive Brain-Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential.
    Han C; Xu G; Xie J; Chen C; Zhang S
    Sci Rep; 2018 Apr; 8(1):5835. PubMed ID: 29643430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    PLoS One; 2014; 9(6):e99235. PubMed ID: 24918435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the Performance of Non-Hair SSVEP-Based BCIs Featuring Template-Based Decoding Methods.
    Chan WH; Chiang KJ; Nakanishi M; Wang YT; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1972-1975. PubMed ID: 30440785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An approximation approach for rendering visual flickers in SSVEP-based BCI using monitor refresh rate.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2176-9. PubMed ID: 24110153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency.
    Srinivasan R; Bibi FA; Nunez PL
    Brain Topogr; 2006; 18(3):167-87. PubMed ID: 16544207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semi-simulation Experiments for Quantifying the Performance of SSVEP-based BCI after Reducing Artifacts from Trapezius Muscles.
    Kanoga S; Nakanishi M; Murai A; Tada M; Kanemura A
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4824-4827. PubMed ID: 30441426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.