These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31722321)
1. Robustness analysis of decoding SSVEPs in humans with head movements using a moving visual flicker. Kanoga S; Nakanishi M; Murai A; Tada M; Kanemura A J Neural Eng; 2019 Dec; 17(1):016009. PubMed ID: 31722321 [TBL] [Abstract][Full Text] [Related]
2. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces. Dreyer AM; Herrmann CS J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824 [TBL] [Abstract][Full Text] [Related]
3. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Chang MH; Baek HJ; Lee SM; Park KS Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034 [TBL] [Abstract][Full Text] [Related]
4. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor. Chen X; Wang Y; Zhang S; Xu S; Gao X J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820 [TBL] [Abstract][Full Text] [Related]
5. The Effect of Muscle Artifact Reduction Methods on Few-channel SSVEPs during Head Movements. Namura N; Kanoga S Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082970 [TBL] [Abstract][Full Text] [Related]
6. An Online Brain-Computer Interface Based on SSVEPs Measured From Non-Hair-Bearing Areas. Wang YT; Nakanishi M; Wang Y; Wei CS; Cheng CK; Jung TP IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):11-18. PubMed ID: 27254871 [TBL] [Abstract][Full Text] [Related]
8. Covert enaction at work: Recording the continuous movements of visuospatial attention to visible or imagined targets by means of Steady-State Visual Evoked Potentials (SSVEPs). Gregori Grgič R; Calore E; de'Sperati C Cortex; 2016 Jan; 74():31-52. PubMed ID: 26615517 [TBL] [Abstract][Full Text] [Related]
9. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding. Ge S; Jiang Y; Wang P; Wang H; Zheng W IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435 [TBL] [Abstract][Full Text] [Related]
10. Effect of higher frequency on the classification of steady-state visual evoked potentials. Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712 [TBL] [Abstract][Full Text] [Related]
11. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events. Wu Y; Li M; Wang J J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070 [TBL] [Abstract][Full Text] [Related]
12. Use of high-frequency visual stimuli above the critical flicker frequency in a SSVEP-based BMI. Sakurada T; Kawase T; Komatsu T; Kansaku K Clin Neurophysiol; 2015 Oct; 126(10):1972-8. PubMed ID: 25577407 [TBL] [Abstract][Full Text] [Related]
13. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials. Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674 [TBL] [Abstract][Full Text] [Related]
14. From lab to life: assessing the impact of real-world interactions on the operation of rapid serial visual presentation-based brain-computer interfaces. Ahsan Awais M; Ward T; Redmond P; Healy G J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 38941986 [No Abstract] [Full Text] [Related]
15. A data expansion technique based on training and testing sample to boost the detection of SSVEPs for brain-computer interfaces. Xiao X; Wang L; Xu M; Wang K; Jung TP; Ming D J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37683663 [No Abstract] [Full Text] [Related]
16. Highly Interactive Brain-Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential. Han C; Xu G; Xie J; Chen C; Zhang S Sci Rep; 2018 Apr; 8(1):5835. PubMed ID: 29643430 [TBL] [Abstract][Full Text] [Related]
17. Generating visual flickers for eliciting robust steady-state visual evoked potentials at flexible frequencies using monitor refresh rate. Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP PLoS One; 2014; 9(6):e99235. PubMed ID: 24918435 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the Performance of Non-Hair SSVEP-Based BCIs Featuring Template-Based Decoding Methods. Chan WH; Chiang KJ; Nakanishi M; Wang YT; Jung TP Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1972-1975. PubMed ID: 30440785 [TBL] [Abstract][Full Text] [Related]
19. An approximation approach for rendering visual flickers in SSVEP-based BCI using monitor refresh rate. Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2176-9. PubMed ID: 24110153 [TBL] [Abstract][Full Text] [Related]
20. Steady-state visual evoked potentials: distributed local sources and wave-like dynamics are sensitive to flicker frequency. Srinivasan R; Bibi FA; Nunez PL Brain Topogr; 2006; 18(3):167-87. PubMed ID: 16544207 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]