BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31722321)

  • 21. Optimization of Checkerboard Spatial Frequencies for Steady-State Visual Evoked Potential Brain-Computer Interfaces.
    Waytowich NR; Yamani Y; Krusienski DJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):557-565. PubMed ID: 27542113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characteristics of High-Frequency SSVEPs Evoked by Visual Stimuli at Different Polar Angles.
    Ming G; Wang Y; Pei W; Chen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3031-3034. PubMed ID: 33018644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural dynamics during repetitive visual stimulation.
    Tsoneva T; Garcia-Molina G; Desain P
    J Neural Eng; 2015 Dec; 12(6):066017. PubMed ID: 26479469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessing the quality of steady-state visual-evoked potentials for moving humans using a mobile electroencephalogram headset.
    Lin YP; Wang Y; Wei CS; Jung TP
    Front Hum Neurosci; 2014; 8():182. PubMed ID: 24744718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complex sparse spatial filter for decoding mixed frequency and phase coded steady-state visually evoked potentials.
    Morikawa N; Tanaka T; Islam MR
    J Neurosci Methods; 2018 Jul; 304():1-10. PubMed ID: 29653130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mobile steady-state evoked potential recording: Dissociable neural effects of real-world navigation and visual stimulation.
    Dowsett J; Dieterich M; Taylor PCJ
    J Neurosci Methods; 2020 Feb; 332():108540. PubMed ID: 31809763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Local Interactions between Steady-State Visually Evoked Potentials at Nearby Flickering Frequencies.
    Liza K; Ray S
    J Neurosci; 2022 May; 42(19):3965-3974. PubMed ID: 35396325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system.
    Lee PL; Sie JJ; Liu YJ; Wu CH; Lee MH; Shu CH; Li PH; Sun CW; Shyu KK
    Ann Biomed Eng; 2010 Jul; 38(7):2383-97. PubMed ID: 20177780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced brain responses to color during smooth-pursuit eye movements.
    Chen J; Valsecchi M; Gegenfurtner KR
    J Neurophysiol; 2017 Aug; 118(2):749-754. PubMed ID: 28468995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Error Correction Regression Framework for Enhancing the Decoding Accuracies of Ear-EEG Brain-Computer Interfaces.
    Kwak NS; Lee SW
    IEEE Trans Cybern; 2020 Aug; 50(8):3654-3667. PubMed ID: 31295141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking feature-based attention.
    Chu VC; D'Zmura M
    J Neural Eng; 2019 Feb; 16(1):016022. PubMed ID: 30524109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing unsupervised canonical correlation analysis-based frequency detection of SSVEPs by incorporating background EEG.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3053-6. PubMed ID: 25570635
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mobile SSVEP-based brain-computer interface for freely moving humans: the robustness of canonical correlation analysis to motion artifacts.
    Lin YP; Wang Y; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1350-3. PubMed ID: 24109946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An SSVEP-based BCI using high duty-cycle visual flicker.
    Lee PL; Yeh CL; Cheng JY; Yang CY; Lan GY
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3350-9. PubMed ID: 21788179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Frequency SSVEP Stimulation Paradigm Based On Dual Frequency Modulation
    Liang L; Yang C; Wang Y; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6184-6187. PubMed ID: 31947255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of SSVEP-based BCI performance by the resting-state EEG network.
    Zhang Y; Xu P; Guo D; Yao D
    J Neural Eng; 2013 Dec; 10(6):066017. PubMed ID: 24280591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of rapid invisible frequency tagging for brain computer interfaces.
    Brickwedde M; Bezsudnova Y; Kowalczyk A; Jensen O; Zhigalov A
    J Neurosci Methods; 2022 Dec; 382():109726. PubMed ID: 36228894
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessing the feasibility of online SSVEP decoding in human walking using a consumer EEG headset.
    Lin YP; Wang Y; Jung TP
    J Neuroeng Rehabil; 2014 Aug; 11():119. PubMed ID: 25108604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.