BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31722321)

  • 41. A comparison study of visually stimulated brain-computer and eye-tracking interfaces.
    Suefusa K; Tanaka T
    J Neural Eng; 2017 Jun; 14(3):036009. PubMed ID: 28198356
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Customized stimulation enhances performance of independent binary SSVEP-BCIs.
    Lopez-Gordo MA; Prieto A; Pelayo F; Morillas C
    Clin Neurophysiol; 2011 Jan; 122(1):128-33. PubMed ID: 20573542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced perceptual processing of self-generated motion: Evidence from steady-state visual evoked potentials.
    Wen W; Brann E; Di Costa S; Haggard P
    Neuroimage; 2018 Jul; 175():438-448. PubMed ID: 29654877
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A gaze independent hybrid-BCI based on visual spatial attention.
    Egan JM; Loughnane GM; Fletcher H; Meade E; Lalor EC
    J Neural Eng; 2017 Aug; 14(4):046006. PubMed ID: 28513478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing Detection of SSVEPs with Intermodulation Frequencies Using Individual Calibration Data.
    Chen X; Wang Y; Zhang S; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2531-2534. PubMed ID: 30440923
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Developing an online steady-state visual evoked potential-based brain-computer interface system using EarEEG.
    Wang YT; Nakanishi M; Kappel SL; Kidmose P; Mandic DP; Wang Y; Cheng CK; Jung TP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2271-4. PubMed ID: 26736745
    [TBL] [Abstract][Full Text] [Related]  

  • 48. EEG-based classification of video quality perception using steady state visual evoked potentials (SSVEPs).
    Acqualagna L; Bosse S; Porbadnigk AK; Curio G; Müller KR; Wiegand T; Blankertz B
    J Neural Eng; 2015 Apr; 12(2):026012. PubMed ID: 25768913
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polychromatic SSVEP stimuli with subtle flickering adapted to brain-display interactions.
    Chien YY; Lin FC; Zao JK; Chou CC; Huang YP; Kuo HY; Wang Y; Jung TP; Shieh HD
    J Neural Eng; 2017 Feb; 14(1):016018. PubMed ID: 28000607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimising the classification of feature-based attention in frequency-tagged electroencephalography data.
    Renton AI; Painter DR; Mattingley JB
    Sci Data; 2022 Jun; 9(1):296. PubMed ID: 35697741
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Active visual search in non-stationary scenes: coping with temporal variability and uncertainty.
    Ušćumlić M; Blankertz B
    J Neural Eng; 2016 Feb; 13(1):016015. PubMed ID: 26726921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Complex-valued spatial filters for SSVEP-based BCIs with phase coding.
    Falzon O; Camilleri K; Muscat J
    IEEE Trans Biomed Eng; 2012 Sep; 59(9):2486-95. PubMed ID: 22736630
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Driving steady-state visual evoked potentials at arbitrary frequencies using temporal interpolation of stimulus presentation.
    Andersen SK; Müller MM
    BMC Neurosci; 2015 Dec; 16():95. PubMed ID: 26690632
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stimulus Design for Visual Evoked Potential Based Brain-Computer Interfaces.
    Xu H; Hsu SH; Nakanishi M; Lin Y; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2545-2551. PubMed ID: 37262122
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.
    Wu CH; Chang HC; Lee PL; Li KS; Sie JJ; Sun CW; Yang CY; Li PH; Deng HT; Shyu KK
    J Neurosci Methods; 2011 Mar; 196(1):170-81. PubMed ID: 21194547
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of steady-state visual and somatosensory evoked potentials for brain-computer interface control.
    Smith DJ; Varghese LA; Stepp CE; Guenther FH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1234-7. PubMed ID: 25570188
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Harmonic coupling of steady-state visual evoked potentials.
    Krusienski DJ; Allison BZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5037-40. PubMed ID: 19163848
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials.
    Dreyer AM; Herrmann CS; Rieger JW
    Front Hum Neurosci; 2017; 11():391. PubMed ID: 28798676
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Maximizing Information Transfer in SSVEP-Based Brain-Computer Interfaces.
    Sengelmann M; Engel AK; Maye A
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):381-394. PubMed ID: 28113192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.