BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31722322)

  • 1. Size-dependent interaction of hydrophilic/hydrophobic ligand functionalized cationic and anionic nanoparticles with lipid bilayers.
    Kumar Basak U; Roobala C; Basu JK; Maiti PK
    J Phys Condens Matter; 2020 Mar; 32(10):104003. PubMed ID: 31722322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Dynamics Simulation of Interaction between Functionalized Nanoparticles with Lipid Membranes: Analysis of Coarse-Grained Models.
    Das M; Dahal U; Mesele O; Liang D; Cui Q
    J Phys Chem B; 2019 Dec; 123(49):10547-10561. PubMed ID: 31675790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand Lipophilicity Determines Molecular Mechanisms of Nanoparticle Adsorption to Lipid Bilayers.
    Huang-Zhu CA; Sheavly JK; Chew AK; Patel SJ; Van Lehn RC
    ACS Nano; 2024 Feb; 18(8):6424-6437. PubMed ID: 38354368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane partitioning of anionic, ligand-coated nanoparticles is accompanied by ligand snorkeling, local disordering, and cholesterol depletion.
    Gkeka P; Angelikopoulos P; Sarkisov L; Cournia Z
    PLoS Comput Biol; 2014 Dec; 10(12):e1003917. PubMed ID: 25474252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and phase transformations of DPPC lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations.
    Prates Ramalho JP; Gkeka P; Sarkisov L
    Langmuir; 2011 Apr; 27(7):3723-30. PubMed ID: 21391652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Martini Coarse Grained Model of Citrate-Capped Gold Nanoparticles Interacting with Lipid Bilayers.
    Salassi S; Caselli L; Cardellini J; Lavagna E; Montis C; Berti D; Rossi G
    J Chem Theory Comput; 2021 Oct; 17(10):6597-6609. PubMed ID: 34491056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Curvature-driven adsorption of cationic nanoparticles to phase boundaries in multicomponent lipid bilayers.
    Sheavly JK; Pedersen JA; Van Lehn RC
    Nanoscale; 2019 Feb; 11(6):2767-2778. PubMed ID: 30672546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling nanoparticle wrapping or translocation in bilayer membranes.
    Curtis EM; Bahrami AH; Weikl TR; Hall CK
    Nanoscale; 2015 Sep; 7(34):14505-14. PubMed ID: 26260123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size dependence of gold nanoparticle interactions with a supported lipid bilayer: A QCM-D study.
    Bailey CM; Kamaloo E; Waterman KL; Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015; 203-204():51-61. PubMed ID: 26042544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward More Free-Floating Model Cell Membranes: Method Development and Application to Their Interaction with Nanoparticles.
    Yousefi N; Wargenau A; Tufenkji N
    ACS Appl Mater Interfaces; 2016 Jun; 8(23):14339-48. PubMed ID: 27211513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of the inclusion of hydrophobic nanoparticles into a lipid bilayer.
    Li Y; Gu N
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7616-9. PubMed ID: 21137995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational investigation on lipid bilayer disruption induced by amphiphilic Janus nanoparticles: combined effect of Janus balance and charged lipid concentration.
    Nguyen D; Wu J; Corrigan P; Li Y
    Nanoscale; 2023 Oct; 15(39):16112-16130. PubMed ID: 37753922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of lipid coating on the interaction between silica nanoparticles and membranes.
    Tada DB; Suraniti E; Rossi LM; Leite CA; Oliveira CS; Tumolo TC; Calemczuk R; Livache T; Baptista MS
    J Biomed Nanotechnol; 2014 Mar; 10(3):519-28. PubMed ID: 24730247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating interactions between ligand-coated nanoparticles and phase-separated lipid bilayers by varying the ligand density and the surface charge.
    Chen X; Tieleman DP; Liang Q
    Nanoscale; 2018 Feb; 10(5):2481-2491. PubMed ID: 29340405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-disruptive uptake of anionic and cationic gold nanoparticles in neutral zwitterionic membranes.
    Canepa E; Salassi S; Simonelli F; Ferrando R; Rolandi R; Lambruschini C; Canepa F; Dante S; Relini A; Rossi G
    Sci Rep; 2021 Jan; 11(1):1256. PubMed ID: 33441958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of curvature on nanoparticle supported lipid bilayers investigated by Raman spectroscopy.
    Ahmed S; Nikolov Z; Wunder SL
    J Phys Chem B; 2011 Nov; 115(45):13181-90. PubMed ID: 21932795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2015 Apr; 11(16):3165-75. PubMed ID: 25757187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.