These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31722322)

  • 21. Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect.
    Li Y; Chen X; Gu N
    J Phys Chem B; 2008 Dec; 112(51):16647-53. PubMed ID: 19032046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-disruptive uptake of anionic and cationic gold nanoparticles in neutral zwitterionic membranes.
    Canepa E; Salassi S; Simonelli F; Ferrando R; Rolandi R; Lambruschini C; Canepa F; Dante S; Relini A; Rossi G
    Sci Rep; 2021 Jan; 11(1):1256. PubMed ID: 33441958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipophilicity of Cationic Ligands Promotes Irreversible Adsorption of Nanoparticles to Lipid Bilayers.
    Lochbaum CA; Chew AK; Zhang X; Rotello V; Van Lehn RC; Pedersen JA
    ACS Nano; 2021 Apr; 15(4):6562-6572. PubMed ID: 33818061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DPPC-cholesterol phase diagram using coarse-grained Molecular Dynamics simulations.
    Wang Y; Gkeka P; Fuchs JE; Liedl KR; Cournia Z
    Biochim Biophys Acta; 2016 Nov; 1858(11):2846-2857. PubMed ID: 27526680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes.
    Angelikopoulos P; Sarkisov L; Cournia Z; Gkeka P
    Nanoscale; 2017 Jan; 9(3):1040-1048. PubMed ID: 27740657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface-structure-regulated penetration of nanoparticles across a cell membrane.
    Li Y; Li X; Li Z; Gao H
    Nanoscale; 2012 Jun; 4(12):3768-75. PubMed ID: 22609866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular insights into the uptake of SiO
    Yuan S; Zhang H; Wang X; Zhang H; Zhang Z; Yuan S
    Colloids Surf B Biointerfaces; 2022 Feb; 210():112250. PubMed ID: 34861541
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers.
    Lolicato F; Joly L; Martinez-Seara H; Fragneto G; Scoppola E; Baldelli Bombelli F; Vattulainen I; Akola J; Maccarini M
    Small; 2019 Jun; 15(23):e1805046. PubMed ID: 31012268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solubility and transport of cationic and anionic patterned nanoparticles.
    Su J; de la Cruz MO; Guo H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 1):011504. PubMed ID: 22400574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The aggregation of striped nanoparticles in mixed phospholipid bilayers.
    Noh SY; Nash A; Notman R
    Nanoscale; 2020 Feb; 12(8):4868-4881. PubMed ID: 31916561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal-controlled cellular uptake of "hot" nanoparticles.
    Chen H; Dong X; Ou L; Ma C; Yuan B; Yang K
    Nanoscale; 2023 Aug; 15(30):12718-12727. PubMed ID: 37470374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of Sensor Coating and Topography on Protein and Nanoparticle Interaction with Supported Lipid Bilayers.
    Yin H; Mensch AC; Lochbaum CA; Foreman-Ortiz IU; Caudill ER; Hamers RJ; Pedersen JA
    Langmuir; 2021 Feb; 37(7):2256-2267. PubMed ID: 33560854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved prediction of bilayer and monolayer properties using a refined BMW-MARTINI force field.
    Miguel V; Perillo MA; Villarreal MA
    Biochim Biophys Acta; 2016 Nov; 1858(11):2903-2910. PubMed ID: 27591685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymer Coating and Lipid Phases Regulate Semiconductor Nanorods' Interaction with Neuronal Membranes: A Modeling Approach.
    Salis B; Pugliese G; Pellegrino T; Diaspro A; Dante S
    ACS Chem Neurosci; 2019 Jan; 10(1):618-627. PubMed ID: 30339349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct proof of spontaneous translocation of lipid-covered hydrophobic nanoparticles through a phospholipid bilayer.
    Guo Y; Terazzi E; Seemann R; Fleury JB; Baulin VA
    Sci Adv; 2016 Nov; 2(11):e1600261. PubMed ID: 27847863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Size and Surface Charge of Gold Nanoparticles on their Skin Permeability: A Molecular Dynamics Study.
    Gupta R; Rai B
    Sci Rep; 2017 Mar; 7():45292. PubMed ID: 28349970
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interplay of electrostatics and lipid packing determines the binding of charged polymer coated nanoparticles to model membranes.
    Biswas N; Bhattacharya R; Saha A; Jana NR; Basu JK
    Phys Chem Chem Phys; 2015 Oct; 17(37):24238-47. PubMed ID: 26327393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simulation study on nanoscale holes generated by gold nanoparticles on negative lipid bilayers.
    Lin JQ; Zheng YG; Zhang HW; Chen Z
    Langmuir; 2011 Jul; 27(13):8323-32. PubMed ID: 21634406
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lipid bilayer disruption induced by amphiphilic Janus nanoparticles: the non-monotonic effect of charged lipids.
    Lee K; Yu Y
    Soft Matter; 2019 Mar; 15(11):2373-2380. PubMed ID: 30806418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of Poloxamer Molecules and Poloxamer Micelles Dissolved in Water and Next to Lipid Bilayers: Results from Computer Simulations.
    Adhikari U; Goliaei A; Tsereteli L; Berkowitz ML
    J Phys Chem B; 2016 Jul; 120(26):5823-30. PubMed ID: 26719970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.