These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 31722329)
1. Impact of a charged neighboring particle on Förster resonance energy transfer (FRET). Abeywickrama C; Premaratne M; Gunapala SD; Andrews DL J Phys Condens Matter; 2020 Feb; 32(9):095305. PubMed ID: 31722329 [TBL] [Abstract][Full Text] [Related]
2. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states. Gonzaga-Galeana JA; Zurita-Sánchez JR J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365 [TBL] [Abstract][Full Text] [Related]
3. Plasmon-Enhanced Energy Transfer in Photosensitive Nanocrystal Device. Akhavan S; Akgul MZ; Hernandez-Martinez PL; Demir HV ACS Nano; 2017 Jun; 11(6):5430-5439. PubMed ID: 28528543 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Förster Resonance Energy Transfer on Single Metal Particle. 2. Dependence on Donor-Acceptor Separation Distance, Particle Size, and Distance from Metal Surface. Zhang J; Fu Y; Chowdhury MH; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2007 Aug; 111(32):11784-11792. PubMed ID: 19890406 [TBL] [Abstract][Full Text] [Related]
5. Enhanced Förster Resonance Energy Transfer (FRET) on Single Metal Particle. Zhang J; Fu Y; Lakowicz JR J Phys Chem C Nanomater Interfaces; 2007 Jan; 111(1):50-56. PubMed ID: 19079780 [TBL] [Abstract][Full Text] [Related]
6. FRET enhancement close to gold nanoparticles positioned in DNA origami constructs. Aissaoui N; Moth-Poulsen K; Käll M; Johansson P; Wilhelmsson LM; Albinsson B Nanoscale; 2017 Jan; 9(2):673-683. PubMed ID: 27942672 [TBL] [Abstract][Full Text] [Related]
7. Enhancement of Resonant Energy Transfer Due to an Evanescent Wave from the Metal. Poudel A; Chen X; Ratner MA J Phys Chem Lett; 2016 Mar; 7(6):955-60. PubMed ID: 26913686 [TBL] [Abstract][Full Text] [Related]
8. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters. Marocico CA; Zhang X; Bradley AL J Chem Phys; 2016 Jan; 144(2):024108. PubMed ID: 26772555 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A; Buschmann V; Müller C; Sauer M J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691 [TBL] [Abstract][Full Text] [Related]
10. Metal-enhanced luminescence in colloidal solutions of CdSe and metal nanoparticles: investigation of density dependence and optical band overlap. Rohner C; Tavernaro I; Chen L; Klar PJ; Schlecht S Phys Chem Chem Phys; 2015 Feb; 17(8):5932-41. PubMed ID: 25635837 [TBL] [Abstract][Full Text] [Related]
11. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer. Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807 [TBL] [Abstract][Full Text] [Related]
12. Competition of Charge and Energy Transfer Processes in Donor-Acceptor Fluorescence Pairs: Calibrating the Spectroscopic Ruler. Moroz P; Jin Z; Sugiyama Y; Lara D; Razgoniaeva N; Yang M; Kholmicheva N; Khon D; Mattoussi H; Zamkov M ACS Nano; 2018 Jun; 12(6):5657-5665. PubMed ID: 29883087 [TBL] [Abstract][Full Text] [Related]
13. Förster resonance energy transfer and kinesin motor proteins. Prevo B; Peterman EJ Chem Soc Rev; 2014 Feb; 43(4):1144-55. PubMed ID: 24071719 [TBL] [Abstract][Full Text] [Related]
14. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
15. Confocal microscopic dual-laser dual-polarization FRET (2polFRET) at the acceptor side for correlating rotations at different distances on the cell surface. Bene L; Gralle M; Damjanovich L Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):1050-1068. PubMed ID: 29292190 [TBL] [Abstract][Full Text] [Related]
16. Matching Nanoantenna Field Confinement to FRET Distances Enhances Förster Energy Transfer Rates. Ghenuche P; Mivelle M; de Torres J; Moparthi SB; Rigneault H; Van Hulst NF; García-Parajó MF; Wenger J Nano Lett; 2015 Sep; 15(9):6193-201. PubMed ID: 26237534 [TBL] [Abstract][Full Text] [Related]
17. Proposal of a new method for measuring Förster Resonance Energy Transfer (FRET) rapidly, quantitatively and non-destructively. Helm PJ Int J Mol Sci; 2012 Sep; 13(10):12367-82. PubMed ID: 23202903 [TBL] [Abstract][Full Text] [Related]
18. Plasmon-assisted Förster resonance energy transfer at the single-molecule level in the moderate quenching regime. Bohlen J; Cuartero-González Á; Pibiri E; Ruhlandt D; Fernández-Domínguez AI; Tinnefeld P; Acuna GP Nanoscale; 2019 Apr; 11(16):7674-7681. PubMed ID: 30946424 [TBL] [Abstract][Full Text] [Related]
19. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield. Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358 [TBL] [Abstract][Full Text] [Related]
20. Perrin and Förster unified: Dual-laser triple-polarization FRET (3polFRET) for interactions at the Förster-distance and beyond. Ungvári T; Gogolák P; Bagdány M; Damjanovich L; Bene L Biochim Biophys Acta; 2016 Apr; 1863(4):703-16. PubMed ID: 26854711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]