These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 3172239)

  • 21. Comparative analysis of flagellin sequences from Escherichia coli strains possessing serologically distinct flagellar filaments with a shared complex surface pattern.
    Schoenhals G; Whitfield C
    J Bacteriol; 1993 Sep; 175(17):5395-402. PubMed ID: 8366026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino acids responsible for flagellar shape are distributed in terminal regions of flagellin.
    Kanto S; Okino H; Aizawa S; Yamaguchi S
    J Mol Biol; 1991 Jun; 219(3):471-80. PubMed ID: 2051483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The organization of the Caulobacter crescentus flagellar filament.
    Driks A; Bryan R; Shapiro L; DeRosier DJ
    J Mol Biol; 1989 Apr; 206(4):627-36. PubMed ID: 2738912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evidence that subcellular flagellin pools in Caulobacter crescentus are precursors in flagellum assembly.
    Huguenel ED; Newton A
    J Bacteriol; 1984 Mar; 157(3):727-32. PubMed ID: 6698938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The flagellar filament of Rhodobacter sphaeroides: pH-induced polymorphic transitions and analysis of the fliC gene.
    Shah DS; Perehinec T; Stevens SM; Aizawa SI; Sockett RE
    J Bacteriol; 2000 Sep; 182(18):5218-24. PubMed ID: 10960108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of the outermost subdomain of Salmonella flagellin in the filament structure revealed by electron cryomicroscopy.
    Mimori-Kiyosue Y; Yamashita I; Fujiyoshi Y; Yamaguchi S; Namba K
    J Mol Biol; 1998 Nov; 284(2):521-30. PubMed ID: 9813134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Point mutations that lock Salmonella typhimurium flagellar filaments in the straight right-handed and left-handed forms and their relation to filament superhelicity.
    Hyman HC; Trachtenberg S
    J Mol Biol; 1991 Jul; 220(1):79-88. PubMed ID: 2067020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the proteins of the Caulobacter crescentus flagellar filament. Peptide analysis and filament organization.
    Weissborn A; Steinmann HM; Shapiro L
    J Biol Chem; 1982 Feb; 257(4):2066-74. PubMed ID: 7056757
    [No Abstract]   [Full Text] [Related]  

  • 29. Non-helical perturbations of the flagellar filament: Salmonella typhimurium SJW117 at 9.6 A resolution.
    Trachtenberg S; DeRosier DJ; Zemlin F; Beckmann E
    J Mol Biol; 1998 Mar; 276(4):759-73. PubMed ID: 9500917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and assembly of flagellar components by Caulobacter crescentus motility mutants.
    Johnson RC; Ferber DM; Ely B
    J Bacteriol; 1983 Jun; 154(3):1137-44. PubMed ID: 6853442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational switching in the flagellar filament of Salmonella typhimurium.
    Trachtenberg S; DeRosier DJ
    J Mol Biol; 1992 Jul; 226(2):447-54. PubMed ID: 1640459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili.
    Cohen-Krausz S; Trachtenberg S
    J Mol Biol; 2002 Aug; 321(3):383-95. PubMed ID: 12162953
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radial mass analysis of the flagellar filament of Salmonella: implications for the subunit folding.
    Yamashita I; Vonderviszt F; Mimori Y; Suzuki H; Oosawa K; Namba K
    J Mol Biol; 1995 Nov; 253(4):547-58. PubMed ID: 7473733
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament.
    Mimori-Kiyosue Y; Vonderviszt F; Yamashita I; Fujiyoshi Y; Namba K
    Proc Natl Acad Sci U S A; 1996 Dec; 93(26):15108-13. PubMed ID: 8986772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The covalent structure of the phase-1 flagellar filament protein of Salmonella typhimurium and its comparison with other flagellins.
    Joys TM
    J Biol Chem; 1985 Dec; 260(29):15758-61. PubMed ID: 2999134
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reconstitution and purification of flagellar filaments from Caulobacter crescentus.
    Sheffery M; Newton A
    J Bacteriol; 1977 Dec; 132(3):1027-30. PubMed ID: 336599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organization and ordered expression of Caulobacter genes encoding flagellar basal body rod and ring proteins.
    Dingwall A; Garman JD; Shapiro L
    J Mol Biol; 1992 Dec; 228(4):1147-62. PubMed ID: 1474584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Bartonella bacilliformis flagella and effect of antiflagellin antibodies on invasion of human erythrocytes.
    Scherer DC; DeBuron-Connors I; Minnick MF
    Infect Immun; 1993 Dec; 61(12):4962-71. PubMed ID: 8225570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The conserved flaF gene has a critical role in coupling flagellin translation and assembly in Caulobacter crescentus.
    Llewellyn M; Dutton RJ; Easter J; O'donnol D; Gober JW
    Mol Microbiol; 2005 Aug; 57(4):1127-42. PubMed ID: 16091049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of the 25-, 27-, and 29-kilodalton flagellins in Caulobacter crescentus cell motility: method for construction of deletion and Tn5 insertion mutants by gene replacement.
    Minnich SA; Ohta N; Taylor N; Newton A
    J Bacteriol; 1988 Sep; 170(9):3953-60. PubMed ID: 2842293
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.