BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31722396)

  • 1. A maximum likelihood approach to electronic health record phenotyping using positive and unlabeled patients.
    Zhang L; Ding X; Ma Y; Muthu N; Ajmal I; Moore JH; Herman DS; Chen J
    J Am Med Inform Assoc; 2020 Jan; 27(1):119-126. PubMed ID: 31722396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Weakly Semi-supervised phenotyping using Electronic Health records.
    Nogues IE; Wen J; Lin Y; Liu M; Tedeschi SK; Geva A; Cai T; Hong C
    J Biomed Inform; 2022 Oct; 134():104175. PubMed ID: 36064111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing calibration of phenotyping models using positive-only electronic health record data.
    Zhang L; Ma Y; Herman D; Chen J
    Biostatistics; 2022 Jul; 23(3):844-859. PubMed ID: 33616157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. sureLDA: A multidisease automated phenotyping method for the electronic health record.
    Ahuja Y; Zhou D; He Z; Sun J; Castro VM; Gainer V; Murphy SN; Hong C; Cai T
    J Am Med Inform Assoc; 2020 Aug; 27(8):1235-1243. PubMed ID: 32548637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relational machine learning for electronic health record-driven phenotyping.
    Peissig PL; Santos Costa V; Caldwell MD; Rottscheit C; Berg RL; Mendonca EA; Page D
    J Biomed Inform; 2014 Dec; 52():260-70. PubMed ID: 25048351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MixEHR-Guided: A guided multi-modal topic modeling approach for large-scale automatic phenotyping using the electronic health record.
    Ahuja Y; Zou Y; Verma A; Buckeridge D; Li Y
    J Biomed Inform; 2022 Oct; 134():104190. PubMed ID: 36058522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Semi-supervised validation of multiple surrogate outcomes with application to electronic medical records phenotyping.
    Hong C; Liao KP; Cai T
    Biometrics; 2019 Mar; 75(1):78-89. PubMed ID: 30267536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput phenotyping with temporal sequences.
    Estiri H; Strasser ZH; Murphy SN
    J Am Med Inform Assoc; 2021 Mar; 28(4):772-781. PubMed ID: 33313899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A collaborative approach to developing an electronic health record phenotyping algorithm for drug-induced liver injury.
    Overby CL; Pathak J; Gottesman O; Haerian K; Perotte A; Murphy S; Bruce K; Johnson S; Talwalkar J; Shen Y; Ellis S; Kullo I; Chute C; Friedman C; Bottinger E; Hripcsak G; Weng C
    J Am Med Inform Assoc; 2013 Dec; 20(e2):e243-52. PubMed ID: 23837993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic health record phenotyping improves detection and screening of type 2 diabetes in the general United States population: A cross-sectional, unselected, retrospective study.
    Anderson AE; Kerr WT; Thames A; Li T; Xiao J; Cohen MS
    J Biomed Inform; 2016 Apr; 60():162-8. PubMed ID: 26707455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable relevance ranking algorithm via semantic similarity assessment improves efficiency of medical chart review.
    Cai T; He Z; Hong C; Zhang Y; Ho YL; Honerlaw J; Geva A; Ayakulangara Panickan V; King A; Gagnon DR; Gaziano M; Cho K; Liao K; Cai T
    J Biomed Inform; 2022 Aug; 132():104109. PubMed ID: 35660521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PIE: A prior knowledge guided integrated likelihood estimation method for bias reduction in association studies using electronic health records data.
    Huang J; Duan R; Hubbard RA; Wu Y; Moore JH; Xu H; Chen Y
    J Am Med Inform Assoc; 2018 Mar; 25(3):345-352. PubMed ID: 29206922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating summary statistics for electronic health record laboratory data for use in high-throughput phenotyping algorithms.
    Albers DJ; Elhadad N; Claassen J; Perotte R; Goldstein A; Hripcsak G
    J Biomed Inform; 2018 Feb; 78():87-101. PubMed ID: 29369797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cost-effective chart review sampling design to account for phenotyping error in electronic health records (EHR) data.
    Yin Z; Tong J; Chen Y; Hubbard RA; Tang CY
    J Am Med Inform Assoc; 2021 Dec; 29(1):52-61. PubMed ID: 34718618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feature extraction for phenotyping from semantic and knowledge resources.
    Ning W; Chan S; Beam A; Yu M; Geva A; Liao K; Mullen M; Mandl KD; Kohane I; Cai T; Yu S
    J Biomed Inform; 2019 Mar; 91():103122. PubMed ID: 30738949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strategy for validation of variables derived from large-scale electronic health record data.
    Liu L; Bustamante R; Earles A; Demb J; Messer K; Gupta S
    J Biomed Inform; 2021 Sep; 121():103879. PubMed ID: 34329789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surrogate-assisted feature extraction for high-throughput phenotyping.
    Yu S; Chakrabortty A; Liao KP; Cai T; Ananthakrishnan AN; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T
    J Am Med Inform Assoc; 2017 Apr; 24(e1):e143-e149. PubMed ID: 27632993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An augmented estimation procedure for EHR-based association studies accounting for differential misclassification.
    Tong J; Huang J; Chubak J; Wang X; Moore JH; Hubbard RA; Chen Y
    J Am Med Inform Assoc; 2020 Feb; 27(2):244-253. PubMed ID: 31617899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.