These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31722415)

  • 1. An in vitro single-molecule assay for eukaryotic cap-dependent translation initiation kinetics.
    Wang H; Sun L; Gaba A; Qu X
    Nucleic Acids Res; 2020 Jan; 48(1):e6. PubMed ID: 31722415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An In Vitro Single-Molecule Imaging Assay for the Analysis of Cap-Dependent Translation Kinetics.
    Gaba A; Wang H; Qu X
    J Vis Exp; 2020 Sep; (163):. PubMed ID: 33016943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochemical characterisation of cap-poly(A) synergy in rabbit reticulocyte lysates: the eIF4G-PABP interaction increases the functional affinity of eIF4E for the capped mRNA 5'-end.
    Borman AM; Michel YM; Kean KM
    Nucleic Acids Res; 2000 Nov; 28(21):4068-75. PubMed ID: 11058101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cap-dependent, scanning-free translation initiation mechanisms.
    Haimov O; Sinvani H; Dikstein R
    Biochim Biophys Acta; 2015 Nov; 1849(11):1313-8. PubMed ID: 26381322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae.
    Iizuka N; Najita L; Franzusoff A; Sarnow P
    Mol Cell Biol; 1994 Nov; 14(11):7322-30. PubMed ID: 7935446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosomal pausing and scanning arrest as mechanisms of translational regulation from cap-distal iron-responsive elements.
    Paraskeva E; Gray NK; Schläger B; Wehr K; Hentze MW
    Mol Cell Biol; 1999 Jan; 19(1):807-16. PubMed ID: 9858603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cap-Independent Translation: What's in a Name?
    Shatsky IN; Terenin IM; Smirnova VV; Andreev DE
    Trends Biochem Sci; 2018 Nov; 43(11):882-895. PubMed ID: 29789219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient translation of an SSA1-derived heat-shock mRNA in yeast cells limited for cap-binding protein and eIF-4F.
    Barnes CA; MacKenzie MM; Johnston GC; Singer RA
    Mol Gen Genet; 1995 Mar; 246(5):619-27. PubMed ID: 7700235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation.
    Svitkin YV; Herdy B; Costa-Mattioli M; Gingras AC; Raught B; Sonenberg N
    Mol Cell Biol; 2005 Dec; 25(23):10556-65. PubMed ID: 16287867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. eIF3d is an mRNA cap-binding protein that is required for specialized translation initiation.
    Lee AS; Kranzusch PJ; Doudna JA; Cate JH
    Nature; 2016 Aug; 536(7614):96-9. PubMed ID: 27462815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translation of non-capped mRNAs in a eukaryotic cell-free system: acceleration of initiation rate in the course of polysome formation.
    Alekhina OM; Vassilenko KS; Spirin AS
    Nucleic Acids Res; 2007; 35(19):6547-59. PubMed ID: 17897963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation initiation by cap-dependent ribosome recruitment: Recent insights and open questions.
    Shirokikh NE; Preiss T
    Wiley Interdiscip Rev RNA; 2018 Jul; 9(4):e1473. PubMed ID: 29624880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A widespread alternate form of cap-dependent mRNA translation initiation.
    de la Parra C; Ernlund A; Alard A; Ruggles K; Ueberheide B; Schneider RJ
    Nat Commun; 2018 Aug; 9(1):3068. PubMed ID: 30076308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic analyses of phosphorylated and non-phosphorylated eIFiso4E binding to mRNA cap analogues.
    Khan MA; Goss DJ
    Int J Biol Macromol; 2018 Jan; 106():387-395. PubMed ID: 28797816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translation initiation factor-dependent extracts from Saccharomyces cerevisiae.
    Altmann M; Blum S; Pelletier J; Sonenberg N; Wilson TM; Trachsel H
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):155-9. PubMed ID: 2169890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mRNA poly(A) tail, a 3' enhancer of translational initiation.
    Munroe D; Jacobson A
    Mol Cell Biol; 1990 Jul; 10(7):3441-55. PubMed ID: 1972543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ribosomal tethering and clustering as mechanisms for translation initiation.
    Chappell SA; Edelman GM; Mauro VP
    Proc Natl Acad Sci U S A; 2006 Nov; 103(48):18077-82. PubMed ID: 17110442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of reticulocyte lysates for mechanistic studies of eukaryotic translation initiation.
    Merrick WC; Barth-Baus D
    Methods Enzymol; 2007; 429():1-21. PubMed ID: 17913616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of a cap-independent translation element that functions in either the 3' or the 5' untranslated region.
    Guo L; Allen E; Miller WA
    RNA; 2000 Dec; 6(12):1808-20. PubMed ID: 11142380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of a limited set of proteins with different mRNAs and protection of 5'-caps against pyrophosphatase digestion in initiation complexes.
    Sonenberg N; Morgan MA; Testa D; Colonno RJ; Shatkin AJ
    Nucleic Acids Res; 1979 Sep; 7(1):15-29. PubMed ID: 493138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.