BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31722526)

  • 1. An Acetone Sensor Based on Plasma-Assisted Cataluminescence and Mechanism Studies by Online Ionizations.
    Zeng N; Long Z; Wang Y; Sun J; Ouyang J; Na N
    Anal Chem; 2019 Dec; 91(24):15763-15768. PubMed ID: 31722526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cataluminescence sensor based on Pt/NU-901 nanocomposite for rapid capture, catalysis and detection of acetone in exhaled breath.
    Shi Z; Li G; Hu Y
    Anal Chim Acta; 2022 May; 1206():339787. PubMed ID: 35473866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasma-assisted cataluminescence sensor array for gaseous hydrocarbons discrimination.
    Na N; Liu H; Han J; Han F; Liu H; Ouyang J
    Anal Chem; 2012 Jun; 84(11):4830-6. PubMed ID: 22568479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive and selective cataluminescence-based sensor system for acetone and diethyl ether determination.
    Wang Q; Li B; Wang Y; Shou Z; Shi G
    Luminescence; 2015 May; 30(3):318-24. PubMed ID: 24990144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.
    Yang T; Gao DX; Yu YL; Chen ML; Wang JH
    Talanta; 2016 Jan; 146():603-8. PubMed ID: 26695309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noninvasive Strategy Based on Real-Time in Vivo Cataluminescence Monitoring for Clinical Breath Analysis.
    Zhang R; Huang W; Li G; Hu Y
    Anal Chem; 2017 Mar; 89(6):3353-3361. PubMed ID: 28218832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct solid-support sample loading for fast cataluminescence determination of acetone in human plasma.
    Yang P; Lau C; Liu X; Lu J
    Anal Chem; 2007 Nov; 79(22):8476-85. PubMed ID: 17939643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of 2-propanol in exhaled breath using in situ enrichment and cataluminescence detection.
    Wu Y; Wen F; Liu D; Kong H; Zhang C; Zhang S
    Luminescence; 2011; 26(2):125-9. PubMed ID: 20155729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of online and offline measurement of exhaled breath for diabetes pre-screening by graphene-based sensor; from powder processing to clinical monitoring prototype.
    Kalidoss R; Umapathy S
    J Breath Res; 2019 May; 13(3):036008. PubMed ID: 30794992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring.
    Rydosz A
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30012960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: Synthesis, characterization, and application for the detection of an exhaled diabetes biomarker.
    Zhu S; Xu L; Yang S; Zhou X; Chen X; Dong B; Bai X; Lu G; Song H
    J Colloid Interface Sci; 2020 Jun; 569():358-365. PubMed ID: 32126348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breath acetone monitoring by portable Si:WO3 gas sensors.
    Righettoni M; Tricoli A; Gass S; Schmid A; Amann A; Pratsinis SE
    Anal Chim Acta; 2012 Aug; 738():69-75. PubMed ID: 22790702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanowire Array Breath Acetone Sensor for Diabetes Monitoring.
    Wei S; Li Z; Murugappan K; Li Z; Lysevych M; Vora K; Tan HH; Jagadish C; Karawdeniya BI; Nolan CJ; Tricoli A; Fu L
    Adv Sci (Weinh); 2024 May; 11(19):e2309481. PubMed ID: 38477429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of hydrogen sulphide using cataluminescence sensors based on alkaline-earth metal salts.
    Liu Y; Tang F; Kang CJ; Cao X
    Luminescence; 2012; 27(4):274-8. PubMed ID: 21905204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au-modified three-dimensional In₂O₃ inverse opals: synthesis and improved performance for acetone sensing toward diagnosis of diabetes.
    Xing R; Li Q; Xia L; Song J; Xu L; Zhang J; Xie Y; Song H
    Nanoscale; 2015 Aug; 7(30):13051-60. PubMed ID: 26172336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements.
    Wang Z; Wang C
    J Breath Res; 2013 Sep; 7(3):037109. PubMed ID: 23959840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Room-temperature cataluminescence from CO oxidation in a non-thermal plasma-assisted catalysis system.
    Han F; Yang Y; Han J; Ouyang J; Na N
    J Hazard Mater; 2015 Aug; 293():1-6. PubMed ID: 25814333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cataluminescence-based sensors: principle, instrument and application.
    Tang F; Guo C; Chen J; Zhang X; Zhang S; Wang X
    Luminescence; 2015 Nov; 30(7):919-39. PubMed ID: 25044929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A plasma-assisted cataluminescence sensor for ethyne detection.
    Peng C; Shao K; Long Z; Ouyang J; Na N
    Anal Bioanal Chem; 2016 Dec; 408(30):8843-8850. PubMed ID: 27651047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sub-ppm acetone gas sensor for diabetes detection using 10 nm thick ultrathin InN FETs.
    Kao KW; Hsu MC; Chang YH; Gwo S; Yeh JA
    Sensors (Basel); 2012; 12(6):7157-68. PubMed ID: 22969342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.