These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31722597)

  • 121. The mitochondrial calcium uniporter is crucial for the generation of fast cortical network rhythms.
    Bas-Orth C; Schneider J; Lewen A; McQueen J; Hasenpusch-Theil K; Theil T; Hardingham GE; Bading H; Kann O
    J Cereb Blood Flow Metab; 2020 Nov; 40(11):2225-2239. PubMed ID: 31722597
    [TBL] [Abstract][Full Text] [Related]  

  • 122. Deletion of mitochondrial calcium uniporter incompletely inhibits calcium uptake and induction of the permeability transition pore in brain mitochondria.
    Hamilton J; Brustovetsky T; Rysted JE; Lin Z; Usachev YM; Brustovetsky N
    J Biol Chem; 2018 Oct; 293(40):15652-15663. PubMed ID: 30154242
    [TBL] [Abstract][Full Text] [Related]  

  • 123. Essential role of mitochondrial Ca2+ uniporter in the generation of mitochondrial pH gradient and metabolism-secretion coupling in insulin-releasing cells.
    Quan X; Nguyen TT; Choi SK; Xu S; Das R; Cha SK; Kim N; Han J; Wiederkehr A; Wollheim CB; Park KS
    J Biol Chem; 2015 Feb; 290(7):4086-96. PubMed ID: 25548283
    [TBL] [Abstract][Full Text] [Related]  

  • 124. The effect of mitochondrial calcium uniporter and cyclophilin D knockout on resistance of brain mitochondria to Ca
    Hamilton J; Brustovetsky T; Brustovetsky N
    J Biol Chem; 2021; 296():100669. PubMed ID: 33864812
    [TBL] [Abstract][Full Text] [Related]  

  • 125. Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ.
    Ta TT; Dikmen HO; Schilling S; Chausse B; Lewen A; Hollnagel JO; Kann O
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4637-4642. PubMed ID: 30782788
    [TBL] [Abstract][Full Text] [Related]  

  • 126. Mitochondrial Permeability Transition: A Molecular Lesion with Multiple Drug Targets.
    Briston T; Selwood DL; Szabadkai G; Duchen MR
    Trends Pharmacol Sci; 2019 Jan; 40(1):50-70. PubMed ID: 30527591
    [TBL] [Abstract][Full Text] [Related]  

  • 127. Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism.
    Yellen G
    J Cell Biol; 2018 Jul; 217(7):2235-2246. PubMed ID: 29752396
    [TBL] [Abstract][Full Text] [Related]  

  • 128. Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models.
    Mammucari C; Raffaello A; Vecellio Reane D; Gherardi G; De Mario A; Rizzuto R
    Pflugers Arch; 2018 Aug; 470(8):1165-1179. PubMed ID: 29541860
    [TBL] [Abstract][Full Text] [Related]  

  • 129. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance.
    Pickles S; Vigié P; Youle RJ
    Curr Biol; 2018 Feb; 28(4):R170-R185. PubMed ID: 29462587
    [TBL] [Abstract][Full Text] [Related]  

  • 130. Local oxygen homeostasis during various neuronal network activity states in the mouse hippocampus.
    Schneider J; Berndt N; Papageorgiou IE; Maurer J; Bulik S; Both M; Draguhn A; Holzhütter HG; Kann O
    J Cereb Blood Flow Metab; 2019 May; 39(5):859-873. PubMed ID: 29099662
    [TBL] [Abstract][Full Text] [Related]  

  • 131. Synaptic Activity Protects Neurons Against Calcium-Mediated Oxidation and Contraction of Mitochondria During Excitotoxicity.
    Depp C; Bas-Orth C; Schroeder L; Hellwig A; Bading H
    Antioxid Redox Signal; 2018 Oct; 29(12):1109-1124. PubMed ID: 28990420
    [TBL] [Abstract][Full Text] [Related]  

  • 132. Miro1-dependent mitochondrial positioning drives the rescaling of presynaptic Ca2+ signals during homeostatic plasticity.
    Vaccaro V; Devine MJ; Higgs NF; Kittler JT
    EMBO Rep; 2017 Feb; 18(2):231-240. PubMed ID: 28039205
    [TBL] [Abstract][Full Text] [Related]  

  • 133. Mitochondrial support of persistent presynaptic vesicle mobilization with age-dependent synaptic growth after LTP.
    Smith HL; Bourne JN; Cao G; Chirillo MA; Ostroff LE; Watson DJ; Harris KM
    Elife; 2016 Dec; 5():. PubMed ID: 27991850
    [TBL] [Abstract][Full Text] [Related]  

  • 134. Global ablation of the mitochondrial calcium uniporter increases glycolysis in cortical neurons subjected to energetic stressors.
    Nichols M; Elustondo PA; Warford J; Thirumaran A; Pavlov EV; Robertson GS
    J Cereb Blood Flow Metab; 2017 Aug; 37(8):3027-3041. PubMed ID: 27909264
    [TBL] [Abstract][Full Text] [Related]  

  • 135. Mitochondrial calcium homeostasis: Implications for neurovascular and neurometabolic coupling.
    Kannurpatti SS
    J Cereb Blood Flow Metab; 2017 Feb; 37(2):381-395. PubMed ID: 27879386
    [TBL] [Abstract][Full Text] [Related]  

  • 136. Heatmapper: web-enabled heat mapping for all.
    Babicki S; Arndt D; Marcu A; Liang Y; Grant JR; Maciejewski A; Wishart DS
    Nucleic Acids Res; 2016 Jul; 44(W1):W147-53. PubMed ID: 27190236
    [TBL] [Abstract][Full Text] [Related]  

  • 137. Glutamate excitotoxicity and Ca2+-regulation of respiration: Role of the Ca2+ activated mitochondrial transporters (CaMCs).
    Rueda CB; Llorente-Folch I; Traba J; Amigo I; Gonzalez-Sanchez P; Contreras L; Juaristi I; Martinez-Valero P; Pardo B; Del Arco A; Satrustegui J
    Biochim Biophys Acta; 2016 Aug; 1857(8):1158-1166. PubMed ID: 27060251
    [TBL] [Abstract][Full Text] [Related]  

  • 138. Rhythms of the hippocampal network.
    Colgin LL
    Nat Rev Neurosci; 2016 Apr; 17(4):239-49. PubMed ID: 26961163
    [TBL] [Abstract][Full Text] [Related]  

  • 139.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 140.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.