These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31722667)
1. Transcriptomic and evolutionary analysis of the mechanisms by which P. argentatum, a rubber producing perennial, responds to drought. Nelson ADL; Ponciano G; McMahan C; Ilut DC; Pugh NA; Elshikha DE; Hunsaker DJ; Pauli D BMC Plant Biol; 2019 Nov; 19(1):494. PubMed ID: 31722667 [TBL] [Abstract][Full Text] [Related]
2. RNASeq analysis of drought-stressed guayule reveals the role of gene transcription for modulating rubber, resin, and carbohydrate synthesis. Dong C; Ponciano G; Huo N; Gu Y; Ilut D; McMahan C Sci Rep; 2021 Nov; 11(1):21610. PubMed ID: 34732788 [TBL] [Abstract][Full Text] [Related]
5. Elucidation of rubber biosynthesis and accumulation in the rubber producing shrub, guayule (Parthenium argentatum Gray). Kajiura H; Suzuki N; Mouri H; Watanabe N; Nakazawa Y Planta; 2018 Feb; 247(2):513-526. PubMed ID: 29116401 [TBL] [Abstract][Full Text] [Related]
6. A novel cDNA from Parthenium argentatum Gray enhances the rubber biosynthetic activity in vitro. Kim IJ; Ryu SB; Kwak YS; Kang H J Exp Bot; 2004 Feb; 55(396):377-85. PubMed ID: 14718497 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of tocopherol biosynthesis genes in guayule (Parthenium argentatum) reduces rubber, resin and argentatins content in stem and leaf tissues. Ponciano G; Dong N; Dong C; Breksa A; Vilches A; Abutokaikah MT; McMahan C; Holguin FO Phytochemistry; 2024 Jun; 222():114060. PubMed ID: 38522560 [TBL] [Abstract][Full Text] [Related]
8. Photosynthesis and assimilate partitioning between carbohydrates and isoprenoid products in vegetatively active and dormant guayule: physiological and environmental constraints on rubber accumulation in a semiarid shrub. Salvucci ME; Barta C; Byers JA; Canarini A Physiol Plant; 2010 Dec; 140(4):368-79. PubMed ID: 20727105 [TBL] [Abstract][Full Text] [Related]
9. Guayule and Russian dandelion as alternative sources of natural rubber. van Beilen JB; Poirier Y Crit Rev Biotechnol; 2007; 27(4):217-31. PubMed ID: 18085463 [TBL] [Abstract][Full Text] [Related]
10. Molecular Studies of the Protein Complexes Involving Lakusta AM; Kwon M; Kwon EG; Stonebloom S; Scheller HV; Ro DK Front Plant Sci; 2019; 10():165. PubMed ID: 30858856 [TBL] [Abstract][Full Text] [Related]
12. Modular assembly of transposable element arrays by microsatellite targeting in the guayule and rice genomes. Valdes Franco JA; Wang Y; Huo N; Ponciano G; Colvin HA; McMahan CM; Gu YQ; Belknap WR BMC Genomics; 2018 Apr; 19(1):271. PubMed ID: 29673330 [TBL] [Abstract][Full Text] [Related]
14. Absence of cross-reactivity of IgE antibodies from subjects allergic to Hevea brasiliensis latex with a new source of natural rubber latex from guayule (Parthenium argentatum). Siler DJ; Cornish K; Hamilton RG J Allergy Clin Immunol; 1996 Nov; 98(5 Pt 1):895-902. PubMed ID: 8939152 [TBL] [Abstract][Full Text] [Related]
15. Characterization of resin extracted from guayule ( Dehghanizadeh M; Cheng F; Jarvis JM; Holguin FO; Brewer CE Data Brief; 2020 Aug; 31():105989. PubMed ID: 32715039 [TBL] [Abstract][Full Text] [Related]
16. Magnesium ion regulation of in vitro rubber biosynthesis by Parthenium argentatum Gray. da Costa BM; Keasling JD; McMahan CM; Cornish K Phytochemistry; 2006 Aug; 67(15):1621-8. PubMed ID: 16780905 [TBL] [Abstract][Full Text] [Related]
17. Adapting the Accelerated Solvent Extraction Method for Resin and Rubber Determination in Guayule Using the BÜCHI Speed Extractor. Rozalén J; García-Martínez MM; Carrión ME; Carmona M; López-Córcoles H; Cornish K; Zalacain A Molecules; 2021 Jan; 26(1):. PubMed ID: 33401499 [TBL] [Abstract][Full Text] [Related]
18. A high-throughput quantification of resin and rubber contents in Luo Z; Thorp KR; Abdel-Haleem H Plant Methods; 2019; 15():154. PubMed ID: 31889978 [TBL] [Abstract][Full Text] [Related]
19. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Cherian S; Ryu SB; Cornish K Plant Biotechnol J; 2019 Nov; 17(11):2041-2061. PubMed ID: 31150158 [TBL] [Abstract][Full Text] [Related]
20. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]