These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31723172)

  • 21. Random sequential renormalization and agglomerative percolation in networks: application to Erdös-Rényi and scale-free graphs.
    Bizhani G; Grassberger P; Paczuski M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066111. PubMed ID: 22304159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A critical study of network models for neural networks and their dynamics.
    Govan G; Xenos A; Frisco P
    J Theor Biol; 2013 Nov; 336():1-10. PubMed ID: 23871957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insensitive dependence of delay-induced oscillation death on complex networks.
    Zou W; Zheng X; Zhan M
    Chaos; 2011 Jun; 21(2):023130. PubMed ID: 21721772
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unifying evolutionary and network dynamics.
    Swarup S; Gasser L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066114. PubMed ID: 17677332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Convergence towards an Erdős-Rényi graph structure in network contraction processes.
    Tishby I; Biham O; Katzav E
    Phys Rev E; 2019 Sep; 100(3-1):032314. PubMed ID: 31640068
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rewiring dynamical networks with prescribed degree distribution for enhancing synchronizability.
    Dadashi M; Barjasteh I; Jalili M
    Chaos; 2010 Dec; 20(4):043119. PubMed ID: 21198089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localized recovery of complex networks against failure.
    Shang Y
    Sci Rep; 2016 Jul; 6():30521. PubMed ID: 27456202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the effects of memory and topology on the controllability of complex dynamical networks.
    Kyriakis P; Pequito S; Bogdan P
    Sci Rep; 2020 Oct; 10(1):17346. PubMed ID: 33060617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scale-free networks emerging from weighted random graphs.
    Kalisky T; Sreenivasan S; Braunstein LA; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):025103. PubMed ID: 16605380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Power-law distribution of degree-degree distance: A better representation of the scale-free property of complex networks.
    Zhou B; Meng X; Stanley HE
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14812-14818. PubMed ID: 32541015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of real-world networks through quantum potentials.
    Amoroso N; Bellantuono L; Pascazio S; Monaco A; Bellotti R
    PLoS One; 2021; 16(7):e0254384. PubMed ID: 34255791
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying network heterogeneity.
    Estrada E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066102. PubMed ID: 21230700
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A random walk model for infection on graphs: spread of epidemics & rumours with mobile agents.
    Draief M; Ganesh A
    Discret Event Dyn Syst; 2011; 21(1):41-61. PubMed ID: 32214674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal series analysis approach to spectra of complex networks.
    Yang H; Zhao F; Qi L; Hu B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066104. PubMed ID: 15244664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Fractional Preferential Attachment Scale-Free Network Model.
    Rak R; Rak E
    Entropy (Basel); 2020 Apr; 22(5):. PubMed ID: 33286281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The ubiquity of small-world networks.
    Telesford QK; Joyce KE; Hayasaka S; Burdette JH; Laurienti PJ
    Brain Connect; 2011; 1(5):367-75. PubMed ID: 22432451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hodge Decomposition of Information Flow on Small-World Networks.
    Haruna T; Fujiki Y
    Front Neural Circuits; 2016; 10():77. PubMed ID: 27733817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Entropy of labeled versus unlabeled networks.
    Paton J; Hartle H; Stepanyants H; van der Hoorn P; Krioukov D
    Phys Rev E; 2022 Nov; 106(5-1):054308. PubMed ID: 36559397
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing synchronizability of diffusively coupled dynamical networks: a survey.
    Jalili M
    IEEE Trans Neural Netw Learn Syst; 2013 Jul; 24(7):1009-22. PubMed ID: 24808517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.