These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31723193)

  • 1. Development of a histamine aptasensor for food safety monitoring.
    Dwidar M; Yokobayashi Y
    Sci Rep; 2019 Nov; 9(1):16659. PubMed ID: 31723193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition and detection of histamine in foods using aptamer modified fluorescence polymer dots sensors.
    Wu G; Ding Z; Dou X; Chen Z; Xie J
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124452. PubMed ID: 38761559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zero background and triple-signal amplified fluorescence aptasensor for antibiotics detection in foods.
    Zeng J; Gan N; Zhang K; He L; Lin J; Hu F; Cao Y
    Talanta; 2019 Jul; 199():491-498. PubMed ID: 30952289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A label-free and universal platform for antibiotics detection based on microchip electrophoresis using aptamer probes.
    Zhou L; Gan N; Zhou Y; Li T; Cao Y; Chen Y
    Talanta; 2017 May; 167():544-549. PubMed ID: 28340759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy.
    Wu S; Duan N; Ma X; Xia Y; Wang H; Wang Z
    Anal Chim Acta; 2013 Jun; 782():59-66. PubMed ID: 23708285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin.
    Du Y; Zhou Y; Wen Y; Bian X; Xie Y; Zhang W; Liu G; Yan J
    Mikrochim Acta; 2019 Nov; 186(12):840. PubMed ID: 31768650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors.
    Alhadrami HA; Chinnappan R; Eissa S; Rahamn AA; Zourob M
    Anal Biochem; 2017 May; 525():78-84. PubMed ID: 28237255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of Ochratoxin A in wheat.
    Zhang J; Zhang X; Yang G; Chen J; Wang S
    Biosens Bioelectron; 2013 Mar; 41():704-9. PubMed ID: 23089328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer.
    Chinnappan R; AlAmer S; Eissa S; Rahamn AA; Abu Salah KM; Zourob M
    Mikrochim Acta; 2017 Dec; 185(1):61. PubMed ID: 29594712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Portable optical aptasensor for rapid detection of mycotoxin with a reversible ligand-grafted biosensing surface.
    Liu LH; Zhou XH; Shi HC
    Biosens Bioelectron; 2015 Oct; 72():300-5. PubMed ID: 26000463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An aptamer based fluorometric microcystin-LR assay using DNA strand-based competitive displacement.
    Chinnappan R; AlZabn R; Abu-Salah KM; Zourob M
    Mikrochim Acta; 2019 Jun; 186(7):435. PubMed ID: 31197617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-enzymatic detection of urea using unmodified gold nanoparticles based aptasensor.
    Kumar P; Lambadi PR; Navani NK
    Biosens Bioelectron; 2015 Oct; 72():340-7. PubMed ID: 26002019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Label-Free Aptasensor for Ochratoxin a Detection Based on the Structure Switch of Aptamer.
    Liu F; Ding A; Zheng J; Chen J; Wang B
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29857594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cascade strand displacement reaction-assisted aptamer-based highly sensitive detection of ochratoxin A.
    Han B; Fang C; Sha L; Jalalah M; Al-Assiri MS; Harraz FA; Cao Y
    Food Chem; 2021 Feb; 338():127827. PubMed ID: 32822900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the Mechanism of Structure-Switching Aptamer Assembly by Super-Resolution Localization of Individual DNA Molecules.
    Lackey HH; Peterson EM; Harris JM; Heemstra JM
    Anal Chem; 2020 May; 92(10):6909-6917. PubMed ID: 32297506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent immunoliposomal nanovesicles for rapid multi-well immuno-biosensing of histamine in fish samples.
    Bajpai VK; Oh C; Khan I; Haldorai Y; Gandhi S; Lee H; Song X; Kim M; Upadhyay A; Chen L; Huh YS; Han YK; Shukla S
    Chemosphere; 2020 Mar; 243():125404. PubMed ID: 31995871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-Free Fluorescence-Based Aptasensor for the Detection of Sulfadimethoxine in Water and Fish.
    Chen XX; Lin ZZ; Hong CY; Zhong HP; Yao QH; Huang ZY
    Appl Spectrosc; 2019 Mar; 73(3):294-303. PubMed ID: 30838894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent aptasensor for chloramphenicol detection using DIL-encapsulated liposome as nanotracer.
    Miao YB; Ren HX; Gan N; Cao Y; Li T; Chen Y
    Biosens Bioelectron; 2016 Jul; 81():454-459. PubMed ID: 27015148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fluorescent DNA Hydrogel Aptasensor Based on the Self-Assembly of Rolling Circle Amplification Products for Sensitive Detection of Ochratoxin A.
    Hao L; Wang W; Shen X; Wang S; Li Q; An F; Wu S
    J Agric Food Chem; 2020 Jan; 68(1):369-375. PubMed ID: 31829586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of aflatoxin B
    Joo M; Baek SH; Cheon SA; Chun HS; Choi SW; Park TJ
    Colloids Surf B Biointerfaces; 2017 Jun; 154():27-32. PubMed ID: 28285035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.