These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 31723215)
1. Sex difference in fatigability of knee extensor muscles during sustained low-level contractions. Akagi R; Sato S; Yoshihara K; Ishimatsu H; Ema R Sci Rep; 2019 Nov; 9(1):16718. PubMed ID: 31723215 [TBL] [Abstract][Full Text] [Related]
2. Age differences in dynamic fatigability and variability of arm and leg muscles: Associations with physical function. Senefeld J; Yoon T; Hunter SK Exp Gerontol; 2017 Jan; 87(Pt A):74-83. PubMed ID: 27989926 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms for the age-related increase in fatigability of the knee extensors in old and very old adults. Sundberg CW; Kuplic A; Hassanlouei H; Hunter SK J Appl Physiol (1985); 2018 Jul; 125(1):146-158. PubMed ID: 29494293 [TBL] [Abstract][Full Text] [Related]
4. Mechanisms for the increased fatigability of the lower limb in people with type 2 diabetes. Senefeld J; Magill SB; Harkins A; Harmer AR; Hunter SK J Appl Physiol (1985); 2018 Aug; 125(2):553-566. PubMed ID: 29596017 [TBL] [Abstract][Full Text] [Related]
5. Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. Hunter SK; Butler JE; Todd G; Gandevia SC; Taylor JL J Appl Physiol (1985); 2006 Oct; 101(4):1036-44. PubMed ID: 16728525 [TBL] [Abstract][Full Text] [Related]
6. Sex Differences in Mechanisms of Recovery after Isometric and Dynamic Fatiguing Tasks. Senefeld J; Pereira HM; Elliott N; Yoon T; Hunter SK Med Sci Sports Exerc; 2018 May; 50(5):1070-1083. PubMed ID: 29298217 [TBL] [Abstract][Full Text] [Related]
7. Sex differences in muscle fatigability and activation patterns of the human quadriceps femoris. Clark BC; Collier SR; Manini TM; Ploutz-Snyder LL Eur J Appl Physiol; 2005 May; 94(1-2):196-206. PubMed ID: 15791418 [TBL] [Abstract][Full Text] [Related]
8. Sex differences in fatigability of dynamic contractions. Hunter SK Exp Physiol; 2016 Feb; 101(2):250-5. PubMed ID: 26440505 [TBL] [Abstract][Full Text] [Related]
9. Why does knee extensor muscles torque decrease after eccentric-type exercise? Martin V; Millet GY; Lattier G; Perrod L J Sports Med Phys Fitness; 2005 Jun; 45(2):143-51. PubMed ID: 16355074 [TBL] [Abstract][Full Text] [Related]
10. Effects of age and sex on fatigability and recovery from a sustained maximal isometric voluntary contraction. Solianik R; Kreivėnaitė L; Streckis V; Mickevičienė D; Skurvydas A J Electromyogr Kinesiol; 2017 Feb; 32():61-69. PubMed ID: 28040567 [TBL] [Abstract][Full Text] [Related]
11. Sex differences in fatigability and recovery relative to the intensity-duration relationship. Ansdell P; Brownstein CG; Škarabot J; Hicks KM; Howatson G; Thomas K; Hunter SK; Goodall S J Physiol; 2019 Dec; 597(23):5577-5595. PubMed ID: 31529693 [TBL] [Abstract][Full Text] [Related]
12. Central and peripheral fatigue in knee and elbow extensor muscles after a long-distance cross-country ski race. Boccia G; Dardanello D; Zoppirolli C; Bortolan L; Cescon C; Schneebeli A; Vernillo G; Schena F; Rainoldi A; Pellegrini B Scand J Med Sci Sports; 2017 Sep; 27(9):945-955. PubMed ID: 27293016 [TBL] [Abstract][Full Text] [Related]
13. Age-related fatigability in knee extensors and knee flexors during dynamic fatiguing contractions. Wu R; De Vito G; Lowery MM; O'Callaghan B; Ditroilo M J Electromyogr Kinesiol; 2022 Feb; 62():102626. PubMed ID: 34998161 [TBL] [Abstract][Full Text] [Related]
14. Knee extensor fatigue resistance of young and older men and women performing sustained and brief intermittent isometric contractions. Mcphee JS; Maden-Wilkinson TM; Narici MV; Jones DA; Degens H Muscle Nerve; 2014 Sep; 50(3):393-400. PubMed ID: 24408784 [TBL] [Abstract][Full Text] [Related]
15. Activation varies among the knee extensor muscles during a submaximal fatiguing contraction in the seated and supine postures. Rochette L; Hunter SK; Place N; Lepers R J Appl Physiol (1985); 2003 Oct; 95(4):1515-22. PubMed ID: 12970375 [TBL] [Abstract][Full Text] [Related]
16. Central and peripheral contributions to fatigue after electrostimulation training. Gondin J; Guette M; Jubeau M; Ballay Y; Martin A Med Sci Sports Exerc; 2006 Jun; 38(6):1147-56. PubMed ID: 16775557 [TBL] [Abstract][Full Text] [Related]
17. Sex differences in neuromuscular function after repeated eccentric contractions of the knee extensor muscles. Lee A; Baxter J; Eischer C; Gage M; Hunter S; Yoon T Eur J Appl Physiol; 2017 Jun; 117(6):1119-1130. PubMed ID: 28432420 [TBL] [Abstract][Full Text] [Related]
18. Mechanisms of fatigue differ after low- and high-force fatiguing contractions in men and women. Yoon T; Schlinder Delap B; Griffith EE; Hunter SK Muscle Nerve; 2007 Oct; 36(4):515-24. PubMed ID: 17626289 [TBL] [Abstract][Full Text] [Related]
19. Age-related fatigue resistance in the knee extensor muscles is specific to contraction mode. Callahan DM; Foulis SA; Kent-Braun JA Muscle Nerve; 2009 May; 39(5):692-702. PubMed ID: 19347926 [TBL] [Abstract][Full Text] [Related]
20. Contraction intensity and sex differences in knee-extensor fatigability. Ansdell P; Thomas K; Howatson G; Hunter S; Goodall S J Electromyogr Kinesiol; 2017 Dec; 37():68-74. PubMed ID: 28963937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]