These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 31723608)
1. Integrated proteogenetic analysis reveals the landscape of a mitochondrial-autophagosome synapse during PARK2-dependent mitophagy. Heo JM; Harper NJ; Paulo JA; Li M; Xu Q; Coughlin M; Elledge SJ; Harper JW Sci Adv; 2019 Nov; 5(11):eaay4624. PubMed ID: 31723608 [TBL] [Abstract][Full Text] [Related]
2. Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Moore AS; Holzbaur EL Proc Natl Acad Sci U S A; 2016 Jun; 113(24):E3349-58. PubMed ID: 27247382 [TBL] [Abstract][Full Text] [Related]
3. Phospho-ubiquitin-PARK2 complex as a marker for mitophagy defects. Callegari S; Oeljeklaus S; Warscheid B; Dennerlein S; Thumm M; Rehling P; Dudek J Autophagy; 2017 Jan; 13(1):201-211. PubMed ID: 27846363 [TBL] [Abstract][Full Text] [Related]
4. Temporal dynamics of PARK2/parkin and OPTN/optineurin recruitment during the mitophagy of damaged mitochondria. Wong YC; Holzbaur EL Autophagy; 2015; 11(2):422-4. PubMed ID: 25801386 [TBL] [Abstract][Full Text] [Related]
5. Autophagosome formation and cargo sequestration in the absence of LC3/GABARAPs. Padman BS; Nguyen TN; Lazarou M Autophagy; 2017 Apr; 13(4):772-774. PubMed ID: 28165849 [TBL] [Abstract][Full Text] [Related]
6. The TOMM machinery is a molecular switch in PINK1 and PARK2/PARKIN-dependent mitochondrial clearance. Bertolin G; Ferrando-Miguel R; Jacoupy M; Traver S; Grenier K; Greene AW; Dauphin A; Waharte F; Bayot A; Salamero J; Lombès A; Bulteau AL; Fon EA; Brice A; Corti O Autophagy; 2013 Nov; 9(11):1801-17. PubMed ID: 24149440 [TBL] [Abstract][Full Text] [Related]
7. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Heo JM; Ordureau A; Paulo JA; Rinehart J; Harper JW Mol Cell; 2015 Oct; 60(1):7-20. PubMed ID: 26365381 [TBL] [Abstract][Full Text] [Related]
9. PINK1 and BECN1 relocalize at mitochondria-associated membranes during mitophagy and promote ER-mitochondria tethering and autophagosome formation. Gelmetti V; De Rosa P; Torosantucci L; Marini ES; Romagnoli A; Di Rienzo M; Arena G; Vignone D; Fimia GM; Valente EM Autophagy; 2017 Apr; 13(4):654-669. PubMed ID: 28368777 [TBL] [Abstract][Full Text] [Related]
10. PINK1-mediated mitophagy maintains pluripotency through optineurin. Wang C; Liu K; Cao J; Wang L; Zhao Q; Li Z; Zhang H; Chen Q; Zhao T Cell Prolif; 2021 May; 54(5):e13034. PubMed ID: 33931895 [TBL] [Abstract][Full Text] [Related]
11. The PINK1/PARK2/optineurin pathway of mitophagy is activated for protection in septic acute kidney injury. Wang Y; Zhu J; Liu Z; Shu S; Fu Y; Liu Y; Cai J; Tang C; Liu Y; Yin X; Dong Z Redox Biol; 2021 Jan; 38():101767. PubMed ID: 33137712 [TBL] [Abstract][Full Text] [Related]
12. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Araya J; Tsubouchi K; Sato N; Ito S; Minagawa S; Hara H; Hosaka Y; Ichikawa A; Saito N; Kadota T; Yoshida M; Fujita Y; Utsumi H; Kobayashi K; Yanagisawa H; Hashimoto M; Wakui H; Ishikawa T; Numata T; Kaneko Y; Asano H; Yamashita M; Odaka M; Morikawa T; Nishimura SL; Nakayama K; Kuwano K Autophagy; 2019 Mar; 15(3):510-526. PubMed ID: 30290714 [TBL] [Abstract][Full Text] [Related]
13. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. Tang C; Han H; Yan M; Zhu S; Liu J; Liu Z; He L; Tan J; Liu Y; Liu H; Sun L; Duan S; Peng Y; Liu F; Yin XM; Zhang Z; Dong Z Autophagy; 2018; 14(5):880-897. PubMed ID: 29172924 [TBL] [Abstract][Full Text] [Related]
14. Critical role of mitochondrial ubiquitination and the OPTN-ATG9A axis in mitophagy. Yamano K; Kikuchi R; Kojima W; Hayashida R; Koyano F; Kawawaki J; Shoda T; Demizu Y; Naito M; Tanaka K; Matsuda N J Cell Biol; 2020 Sep; 219(9):. PubMed ID: 32556086 [TBL] [Abstract][Full Text] [Related]
15. Global Landscape and Dynamics of Parkin and USP30-Dependent Ubiquitylomes in iNeurons during Mitophagic Signaling. Ordureau A; Paulo JA; Zhang J; An H; Swatek KN; Cannon JR; Wan Q; Komander D; Harper JW Mol Cell; 2020 Mar; 77(5):1124-1142.e10. PubMed ID: 32142685 [TBL] [Abstract][Full Text] [Related]
16. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy. Ordureau A; Heo JM; Duda DM; Paulo JA; Olszewski JL; Yanishevski D; Rinehart J; Schulman BA; Harper JW Proc Natl Acad Sci U S A; 2015 May; 112(21):6637-42. PubMed ID: 25969509 [TBL] [Abstract][Full Text] [Related]
17. Pyruvate stimulates mitophagy via PINK1 stabilization. Park S; Choi SG; Yoo SM; Nah J; Jeong E; Kim H; Jung YK Cell Signal; 2015 Sep; 27(9):1824-30. PubMed ID: 26071202 [TBL] [Abstract][Full Text] [Related]
18. LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy. Padman BS; Nguyen TN; Uoselis L; Skulsuppaisarn M; Nguyen LK; Lazarou M Nat Commun; 2019 Jan; 10(1):408. PubMed ID: 30679426 [TBL] [Abstract][Full Text] [Related]
19. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Jin SM; Youle RJ Autophagy; 2013 Nov; 9(11):1750-7. PubMed ID: 24149988 [TBL] [Abstract][Full Text] [Related]
20. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Sarraf SA; Raman M; Guarani-Pereira V; Sowa ME; Huttlin EL; Gygi SP; Harper JW Nature; 2013 Apr; 496(7445):372-6. PubMed ID: 23503661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]