These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 31723953)
1. Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips. Richard C; Fakhfouri A; Colditz M; Striggow F; Kronstein-Wiedemann R; Tonn T; Medina-Sánchez M; Schmidt OG; Gemming T; Winkler A Lab Chip; 2019 Dec; 19(24):4043-4051. PubMed ID: 31723953 [TBL] [Abstract][Full Text] [Related]
2. The complexity of surface acoustic wave fields used for microfluidic applications. Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142 [TBL] [Abstract][Full Text] [Related]
3. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel. Nam J; Lim H; Kim D; Shin S Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070 [TBL] [Abstract][Full Text] [Related]
4. Surface acoustic wave microfluidics. Ding X; Li P; Lin SC; Stratton ZS; Nama N; Guo F; Slotcavage D; Mao X; Shi J; Costanzo F; Huang TJ Lab Chip; 2013 Sep; 13(18):3626-49. PubMed ID: 23900527 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. Liu X; Zheng T; Wang C Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304 [TBL] [Abstract][Full Text] [Related]
6. Surface acoustic wave manipulation of bioparticles. Qi M; Dang D; Yang X; Wang J; Zhang H; Liang W Soft Matter; 2023 Jun; 19(23):4166-4187. PubMed ID: 37212436 [TBL] [Abstract][Full Text] [Related]
7. Design and simulation of a microfluidic device for acoustic cell separation. Shamloo A; Boodaghi M Ultrasonics; 2018 Mar; 84():234-243. PubMed ID: 29175517 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves. Xu M; Lee PVS; Collins DJ Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222 [TBL] [Abstract][Full Text] [Related]
9. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation. Kim U; Oh B; Ahn J; Lee S; Cho Y Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206 [TBL] [Abstract][Full Text] [Related]
10. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices. Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018 [TBL] [Abstract][Full Text] [Related]
11. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications. Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383 [TBL] [Abstract][Full Text] [Related]
13. A Hybrid Spiral Microfluidic Platform Coupled with Surface Acoustic Waves for Circulating Tumor Cell Sorting and Separation: A Numerical Study. Altay R; Yapici MK; Koşar A Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323441 [TBL] [Abstract][Full Text] [Related]
14. A high-throughput microfluidic device based on controlled incremental filtration to enable centrifugation-free, low extracorporeal volume leukapheresis. Lezzar DL; Lam FW; Huerta R; Mukhamedshin A; Lu M; Shevkoplyas SS Sci Rep; 2022 Aug; 12(1):13798. PubMed ID: 35963876 [TBL] [Abstract][Full Text] [Related]
15. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Ai Y; Sanders CK; Marrone BL Anal Chem; 2013 Oct; 85(19):9126-34. PubMed ID: 23968497 [TBL] [Abstract][Full Text] [Related]
16. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells. Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523 [TBL] [Abstract][Full Text] [Related]
17. Effects of two surface acoustic wave sorting chips on particles multi-level sorting. Liu G; He F; Li Y; Zhao H; Li X; Tang H; Li Z; Yang Z; Zhang Y Biomed Microdevices; 2019 Jun; 21(3):59. PubMed ID: 31227912 [TBL] [Abstract][Full Text] [Related]
18. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics. Travagliati M; Shilton R; Beltram F; Cecchini M J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022515 [TBL] [Abstract][Full Text] [Related]
19. A Passive Microfluidic Device Based on Crossflow Filtration for Cell Separation Measurements: A Spectrophotometric Characterization. Faustino V; Catarino SO; Pinho D; Lima RA; Minas G Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30544881 [TBL] [Abstract][Full Text] [Related]