BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 31723953)

  • 1. Blood platelet enrichment in mass-producible surface acoustic wave (SAW) driven microfluidic chips.
    Richard C; Fakhfouri A; Colditz M; Striggow F; Kronstein-Wiedemann R; Tonn T; Medina-Sánchez M; Schmidt OG; Gemming T; Winkler A
    Lab Chip; 2019 Dec; 19(24):4043-4051. PubMed ID: 31723953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The complexity of surface acoustic wave fields used for microfluidic applications.
    Weser R; Winkler A; Weihnacht M; Menzel S; Schmidt H
    Ultrasonics; 2020 Aug; 106():106160. PubMed ID: 32334142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface acoustic wave microfluidics.
    Ding X; Li P; Lin SC; Stratton ZS; Nama N; Guo F; Slotcavage D; Mao X; Shi J; Costanzo F; Huang TJ
    Lab Chip; 2013 Sep; 13(18):3626-49. PubMed ID: 23900527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave.
    Liu X; Zheng T; Wang C
    Ultrasonics; 2023 Mar; 129():106914. PubMed ID: 36577304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface acoustic wave manipulation of bioparticles.
    Qi M; Dang D; Yang X; Wang J; Zhang H; Liang W
    Soft Matter; 2023 Jun; 19(23):4166-4187. PubMed ID: 37212436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and simulation of a microfluidic device for acoustic cell separation.
    Shamloo A; Boodaghi M
    Ultrasonics; 2018 Mar; 84():234-243. PubMed ID: 29175517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves.
    Xu M; Lee PVS; Collins DJ
    Lab Chip; 2021 Dec; 22(1):90-99. PubMed ID: 34860222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustofluidics and whole-blood manipulation in surface acoustic wave counterflow devices.
    Travagliati M; Shilton RJ; Pagliazzi M; Tonazzini I; Beltram F; Cecchini M
    Anal Chem; 2014 Nov; 86(21):10633-8. PubMed ID: 25260018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface acoustic wave induced particle manipulation in a PDMS channel--principle concepts for continuous flow applications.
    Johansson L; Enlund J; Johansson S; Katardjiev I; Yantchev V
    Biomed Microdevices; 2012 Apr; 14(2):279-89. PubMed ID: 22076383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hybrid Spiral Microfluidic Platform Coupled with Surface Acoustic Waves for Circulating Tumor Cell Sorting and Separation: A Numerical Study.
    Altay R; Yapici MK; Koşar A
    Biosensors (Basel); 2022 Mar; 12(3):. PubMed ID: 35323441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-throughput microfluidic device based on controlled incremental filtration to enable centrifugation-free, low extracorporeal volume leukapheresis.
    Lezzar DL; Lam FW; Huerta R; Mukhamedshin A; Lu M; Shevkoplyas SS
    Sci Rep; 2022 Aug; 12(1):13798. PubMed ID: 35963876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves.
    Ai Y; Sanders CK; Marrone BL
    Anal Chem; 2013 Oct; 85(19):9126-34. PubMed ID: 23968497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of two surface acoustic wave sorting chips on particles multi-level sorting.
    Liu G; He F; Li Y; Zhao H; Li X; Tang H; Li Z; Yang Z; Zhang Y
    Biomed Microdevices; 2019 Jun; 21(3):59. PubMed ID: 31227912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.
    Travagliati M; Shilton R; Beltram F; Cecchini M
    J Vis Exp; 2013 Aug; (78):. PubMed ID: 24022515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Passive Microfluidic Device Based on Crossflow Filtration for Cell Separation Measurements: A Spectrophotometric Characterization.
    Faustino V; Catarino SO; Pinho D; Lima RA; Minas G
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30544881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enabling practical surface acoustic wave nebulizer drug delivery via amplitude modulation.
    Rajapaksa A; Qi A; Yeo LY; Coppel R; Friend JR
    Lab Chip; 2014 Jun; 14(11):1858-65. PubMed ID: 24740643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.