These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 31723953)

  • 21. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I.
    Sachs S; Baloochi M; Cierpka C; König J
    Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiation dominated acoustophoresis driven by surface acoustic waves.
    Guo J; Kang Y; Ai Y
    J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves.
    Ning S; Liu S; Xiao Y; Zhang G; Cui W; Reed M
    Lab Chip; 2021 Nov; 21(23):4608-4617. PubMed ID: 34763349
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced surface acoustic wave cell sorting by 3D microfluidic-chip design.
    Ung WL; Mutafopulos K; Spink P; Rambach RW; Franke T; Weitz DA
    Lab Chip; 2017 Nov; 17(23):4059-4069. PubMed ID: 28994439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in microfluidic actuation and micro-object manipulation via surface acoustic waves.
    Destgeer G; Sung HJ
    Lab Chip; 2015 Jul; 15(13):2722-38. PubMed ID: 26016538
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Clogging-free continuous operation with whole blood in a radial pillar device (RAPID).
    Mehendale N; Sharma O; Pandey S; Paul D
    Biomed Microdevices; 2018 Aug; 20(3):75. PubMed ID: 30120596
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustic valves in microfluidic channels for droplet manipulation.
    Qin X; Wei X; Li L; Wang H; Jiang Z; Sun D
    Lab Chip; 2021 Aug; 21(16):3165-3173. PubMed ID: 34190278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impedance matched channel walls in acoustofluidic systems.
    Leibacher I; Schatzer S; Dual J
    Lab Chip; 2014 Feb; 14(3):463-70. PubMed ID: 24310918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acoustic Microfluidics.
    Zhang P; Bachman H; Ozcelik A; Huang TJ
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):17-43. PubMed ID: 32531185
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell detachment and label-free cell sorting using modulated surface acoustic waves (SAWs) in droplet-based microfluidics.
    Bussonnière A; Miron Y; Baudoin M; Bou Matar O; Grandbois M; Charette P; Renaudin A
    Lab Chip; 2014 Sep; 14(18):3556-63. PubMed ID: 25029952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-cost, high-throughput and rapid-prototyped 3D-integrated dielectrophoretic channels for continuous cell enrichment and separation.
    Faraghat SA; Fatoyinbo HO; Hoettges KF; Hughes MP
    Electrophoresis; 2023 Jun; 44(11-12):947-955. PubMed ID: 36409835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic integrated acoustic waving for manipulation of cells and molecules.
    Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A
    Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis.
    Urbansky A; Ohlsson P; Lenshof A; Garofalo F; Scheding S; Laurell T
    Sci Rep; 2017 Dec; 7(1):17161. PubMed ID: 29215046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acoustic Cell Separation Based on Density and Mechanical Properties.
    Xie Y; Mao Z; Bachman H; Li P; Zhang P; Ren L; Wu M; Huang TJ
    J Biomech Eng; 2020 Mar; 142(3):0310051-9. PubMed ID: 32006021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation.
    Soliman AM; Eldosoky MA; Taha TE
    Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles.
    Huang J; Ren X; Zhou Q; Zhou J; Xu Z
    Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical and experimental evaluation of microfluidic sorting devices.
    Taylor JK; Ren CL; Stubley GD
    Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor.
    Sonato A; Agostini M; Ruffato G; Gazzola E; Liuni D; Greco G; Travagliati M; Cecchini M; Romanato F
    Lab Chip; 2016 Apr; 16(7):1224-33. PubMed ID: 26932784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.