These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 31723953)
21. On the acoustically induced fluid flow in particle separation systems employing standing surface acoustic waves - Part I. Sachs S; Baloochi M; Cierpka C; König J Lab Chip; 2022 May; 22(10):2011-2027. PubMed ID: 35482303 [TBL] [Abstract][Full Text] [Related]
22. Radiation dominated acoustophoresis driven by surface acoustic waves. Guo J; Kang Y; Ai Y J Colloid Interface Sci; 2015 Oct; 455():203-11. PubMed ID: 26070191 [TBL] [Abstract][Full Text] [Related]
23. A microfluidic chip with a serpentine channel enabling high-throughput cell separation using surface acoustic waves. Ning S; Liu S; Xiao Y; Zhang G; Cui W; Reed M Lab Chip; 2021 Nov; 21(23):4608-4617. PubMed ID: 34763349 [TBL] [Abstract][Full Text] [Related]
32. Microfluidic integrated acoustic waving for manipulation of cells and molecules. Barani A; Paktinat H; Janmaleki M; Mohammadi A; Mosaddegh P; Fadaei-Tehrani A; Sanati-Nezhad A Biosens Bioelectron; 2016 Nov; 85():714-725. PubMed ID: 27262557 [TBL] [Abstract][Full Text] [Related]
33. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Urbansky A; Ohlsson P; Lenshof A; Garofalo F; Scheding S; Laurell T Sci Rep; 2017 Dec; 7(1):17161. PubMed ID: 29215046 [TBL] [Abstract][Full Text] [Related]
34. Acoustic Cell Separation Based on Density and Mechanical Properties. Xie Y; Mao Z; Bachman H; Li P; Zhang P; Ren L; Wu M; Huang TJ J Biomech Eng; 2020 Mar; 142(3):0310051-9. PubMed ID: 32006021 [TBL] [Abstract][Full Text] [Related]
35. The Separation of Blood Components Using Standing Surface Acoustic Waves (SSAWs) Microfluidic Devices: Analysis and Simulation. Soliman AM; Eldosoky MA; Taha TE Bioengineering (Basel); 2017 Mar; 4(2):. PubMed ID: 28952506 [TBL] [Abstract][Full Text] [Related]
36. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices. Xiang N; Ni Z Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099 [TBL] [Abstract][Full Text] [Related]
37. Flexible acoustic lens-based surface acoustic wave device for manipulation and directional transport of micro-particles. Huang J; Ren X; Zhou Q; Zhou J; Xu Z Ultrasonics; 2023 Feb; 128():106865. PubMed ID: 36260963 [TBL] [Abstract][Full Text] [Related]
38. Numerical and experimental evaluation of microfluidic sorting devices. Taylor JK; Ren CL; Stubley GD Biotechnol Prog; 2008; 24(4):981-91. PubMed ID: 19194907 [TBL] [Abstract][Full Text] [Related]
39. A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor. Sonato A; Agostini M; Ruffato G; Gazzola E; Liuni D; Greco G; Travagliati M; Cecchini M; Romanato F Lab Chip; 2016 Apr; 16(7):1224-33. PubMed ID: 26932784 [TBL] [Abstract][Full Text] [Related]
40. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy. Pandiyan VP; John R Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]