BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31724063)

  • 1. Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support.
    Gong Z; He Q; Che C; Liu J; Yang G
    Bioprocess Biosyst Eng; 2020 Mar; 43(3):385-392. PubMed ID: 31724063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: solid-state fermentation, water extraction, medium optimization and potential applications.
    Zhao F; Zheng M; Xu X
    Bioresour Technol; 2023 Feb; 369():128426. PubMed ID: 36462764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils.
    Gong Z; Peng Y; Wang Q
    Biotechnol Lett; 2015 Oct; 37(10):2033-8. PubMed ID: 26087946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.
    Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J
    World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and characterization of rhamnolipid using palm oil agricultural refinery waste.
    Radzuan MN; Banat IM; Winterburn J
    Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of culture medium for anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl for microbial enhanced oil recovery.
    Zhao F; Mandlaa M; Hao J; Liang X; Shi R; Han S; Zhang Y
    Lett Appl Microbiol; 2014 Aug; 59(2):231-7. PubMed ID: 24738996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater.
    Li AH; Xu MY; Sun W; Sun GP
    Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximize rhamnolipid production with low foaming and high yield.
    Sodagari M; Invally K; Ju LK
    Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2.
    Chen SY; Lu WB; Wei YH; Chen WM; Chang JS
    Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeated pH-stat fed-batch fermentation for rhamnolipid production with indigenous Pseudomonas aeruginosa S2.
    Chen SY; Wei YH; Chang JS
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):67-74. PubMed ID: 17457541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control.
    Bazsefidpar S; Mokhtarani B; Panahi R; Hajfarajollah H
    Biodegradation; 2019 Feb; 30(1):59-69. PubMed ID: 30600422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery.
    Zhao F; Shi R; Zhao J; Li G; Bai X; Han S; Zhang Y
    J Appl Microbiol; 2015 Feb; 118(2):379-89. PubMed ID: 25410277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Palm Fatty Acid Distillate-Containing Medium for Biosurfactant Production by
    Nurfarahin AH; Mohamed MS; Phang LY
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31323769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of rhamnolipid biosurfactants in solid-state fermentation: process optimization and characterization studies.
    Dabaghi S; Ataei SA; Taheri A
    BMC Biotechnol; 2023 Jan; 23(1):2. PubMed ID: 36694155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source.
    George S; Jayachandran K
    Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker.
    Long X; Shen C; He N; Zhang G; Meng Q
    Bioresour Technol; 2017 Jan; 224():536-543. PubMed ID: 27839682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control.
    Jiang J; Zu Y; Li X; Meng Q; Long X
    Bioresour Technol; 2020 Feb; 298():122394. PubMed ID: 31757615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source.
    Thaniyavarn J; Chongchin A; Wanitsuksombut N; Thaniyavarn S; Pinphanichakarn P; Leepipatpiboon N; Morikawa M; Kanaya S
    J Gen Appl Microbiol; 2006 Aug; 52(4):215-22. PubMed ID: 17116970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D.
    George S; Jayachandran K
    J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.