These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 31724063)
1. Optimization and scale-up of the production of rhamnolipid by Pseudomonas aeruginosa in solid-state fermentation using high-density polyurethane foam as an inert support. Gong Z; He Q; Che C; Liu J; Yang G Bioprocess Biosyst Eng; 2020 Mar; 43(3):385-392. PubMed ID: 31724063 [TBL] [Abstract][Full Text] [Related]
2. Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: solid-state fermentation, water extraction, medium optimization and potential applications. Zhao F; Zheng M; Xu X Bioresour Technol; 2023 Feb; 369():128426. PubMed ID: 36462764 [TBL] [Abstract][Full Text] [Related]
3. Rhamnolipid production, characterization and fermentation scale-up by Pseudomonas aeruginosa with plant oils. Gong Z; Peng Y; Wang Q Biotechnol Lett; 2015 Oct; 37(10):2033-8. PubMed ID: 26087946 [TBL] [Abstract][Full Text] [Related]
4. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications. Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616 [TBL] [Abstract][Full Text] [Related]
5. Production and characterization of rhamnolipid using palm oil agricultural refinery waste. Radzuan MN; Banat IM; Winterburn J Bioresour Technol; 2017 Feb; 225():99-105. PubMed ID: 27888734 [TBL] [Abstract][Full Text] [Related]
6. Optimization of culture medium for anaerobic production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl for microbial enhanced oil recovery. Zhao F; Mandlaa M; Hao J; Liang X; Shi R; Han S; Zhang Y Lett Appl Microbiol; 2014 Aug; 59(2):231-7. PubMed ID: 24738996 [TBL] [Abstract][Full Text] [Related]
7. Rhamnolipid production by pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Li AH; Xu MY; Sun W; Sun GP Appl Biochem Biotechnol; 2011 Mar; 163(5):600-11. PubMed ID: 20830582 [TBL] [Abstract][Full Text] [Related]
8. Maximize rhamnolipid production with low foaming and high yield. Sodagari M; Invally K; Ju LK Enzyme Microb Technol; 2018 Mar; 110():79-86. PubMed ID: 29310859 [TBL] [Abstract][Full Text] [Related]
9. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Chen SY; Lu WB; Wei YH; Chen WM; Chang JS Biotechnol Prog; 2007; 23(3):661-6. PubMed ID: 17461551 [TBL] [Abstract][Full Text] [Related]
11. Overproduction of rhamnolipid by fed-batch cultivation of Pseudomonas aeruginosa in a lab-scale fermenter under tight DO control. Bazsefidpar S; Mokhtarani B; Panahi R; Hajfarajollah H Biodegradation; 2019 Feb; 30(1):59-69. PubMed ID: 30600422 [TBL] [Abstract][Full Text] [Related]
12. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. Zhao F; Shi R; Zhao J; Li G; Bai X; Han S; Zhang Y J Appl Microbiol; 2015 Feb; 118(2):379-89. PubMed ID: 25410277 [TBL] [Abstract][Full Text] [Related]
13. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Amani H; Müller MM; Syldatk C; Hausmann R Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261 [TBL] [Abstract][Full Text] [Related]
14. Development of Palm Fatty Acid Distillate-Containing Medium for Biosurfactant Production by Nurfarahin AH; Mohamed MS; Phang LY Molecules; 2019 Jul; 24(14):. PubMed ID: 31323769 [TBL] [Abstract][Full Text] [Related]
15. Production of rhamnolipid biosurfactants in solid-state fermentation: process optimization and characterization studies. Dabaghi S; Ataei SA; Taheri A BMC Biotechnol; 2023 Jan; 23(1):2. PubMed ID: 36694155 [TBL] [Abstract][Full Text] [Related]
16. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. George S; Jayachandran K Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921 [TBL] [Abstract][Full Text] [Related]
17. Enhanced rhamnolipids production via efficient foam-control using stop valve as a foam breaker. Long X; Shen C; He N; Zhang G; Meng Q Bioresour Technol; 2017 Jan; 224():536-543. PubMed ID: 27839682 [TBL] [Abstract][Full Text] [Related]
18. Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control. Jiang J; Zu Y; Li X; Meng Q; Long X Bioresour Technol; 2020 Feb; 298():122394. PubMed ID: 31757615 [TBL] [Abstract][Full Text] [Related]
19. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. Thaniyavarn J; Chongchin A; Wanitsuksombut N; Thaniyavarn S; Pinphanichakarn P; Leepipatpiboon N; Morikawa M; Kanaya S J Gen Appl Microbiol; 2006 Aug; 52(4):215-22. PubMed ID: 17116970 [TBL] [Abstract][Full Text] [Related]
20. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S; Jayachandran K J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]