These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 31724063)
21. Fermentative production of rhamnolipid and purification by adsorption chromatography. Jadhav J; Dutta S; Kale S; Pratap A Prep Biochem Biotechnol; 2018 Mar; 48(3):234-241. PubMed ID: 29313452 [TBL] [Abstract][Full Text] [Related]
22. Enhanced rhamnolipid production by Pseudomonas aeruginosa overexpressing estA in a simple medium. Dobler L; de Carvalho BR; Alves WS; Neves BC; Freire DMG; Almeida RV PLoS One; 2017; 12(8):e0183857. PubMed ID: 28837648 [TBL] [Abstract][Full Text] [Related]
23. The effect of carbon, nitrogen and iron ions on mono-rhamnolipid production and rhamnolipid synthesis gene expression by Pseudomonas aeruginosa ATCC 15442. Shatila F; Diallo MM; Şahar U; Ozdemir G; Yalçın HT Arch Microbiol; 2020 Aug; 202(6):1407-1417. PubMed ID: 32173773 [TBL] [Abstract][Full Text] [Related]
24. Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Camilios-Neto D; Bugay C; de Santana-Filho AP; Joslin T; de Souza LM; Sassaki GL; Mitchell DA; Krieger N Appl Microbiol Biotechnol; 2011 Mar; 89(5):1395-403. PubMed ID: 21080163 [TBL] [Abstract][Full Text] [Related]
25. Evaluation of rhamnolipid production by a halotolerant novel strain of Pseudomonas aeruginosa. Varjani S; Upasani VN Bioresour Technol; 2019 Sep; 288():121577. PubMed ID: 31174086 [TBL] [Abstract][Full Text] [Related]
26. Agro-Industrial Wastes as Potential Substrates for Rhamnolipid Production by Nasir MS; Mohd Yahya AR; Md Noh NA Trop Life Sci Res; 2024 Mar; 35(1):33-47. PubMed ID: 39262861 [TBL] [Abstract][Full Text] [Related]
27. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398 [TBL] [Abstract][Full Text] [Related]
28. Utilization of Agro-Industry Residue for Rhamnolipid Production by P. aeruginosa AMB AS7 and Its Application in Chromium Removal. Samykannu M; Achary A Appl Biochem Biotechnol; 2017 Sep; 183(1):70-90. PubMed ID: 28161866 [TBL] [Abstract][Full Text] [Related]
29. Enhanced rhamnolipids production by Pseudomonas aeruginosa based on a pH stage-controlled fed-batch fermentation process. Zhu L; Yang X; Xue C; Chen Y; Qu L; Lu W Bioresour Technol; 2012 Aug; 117():208-13. PubMed ID: 22613897 [TBL] [Abstract][Full Text] [Related]
30. Investigation on spectral and biomedical characterization of rhamnolipid from a marine associated bacterium Pseudomonas aeruginosa (DKB1). Sanjivkumar M; Deivakumari M; Immanuel G Arch Microbiol; 2021 Jul; 203(5):2297-2314. PubMed ID: 33646338 [TBL] [Abstract][Full Text] [Related]
31. Enhanced rhamnolipid production by Pseudomonas aeruginosa USM-AR2 via fed-batch cultivation based on maximum substrate uptake rate. Noh NA; Salleh SM; Yahya AR Lett Appl Microbiol; 2014 Jun; 58(6):617-23. PubMed ID: 24698293 [TBL] [Abstract][Full Text] [Related]
32. Cassava wastewater as a substrate for the simultaneous production of rhamnolipids and polyhydroxyalkanoates by Pseudomonas aeruginosa. Costa SG; Lépine F; Milot S; Déziel E; Nitschke M; Contiero J J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1063-72. PubMed ID: 19471980 [TBL] [Abstract][Full Text] [Related]
33. Rhamnolipid production by a gamma ray-induced Pseudomonas aeruginosa mutant under solid state fermentation. El-Housseiny GS; Aboshanab KM; Aboulwafa MM; Hassouna NA AMB Express; 2019 Jan; 9(1):7. PubMed ID: 30617633 [TBL] [Abstract][Full Text] [Related]
34. Polyunsaturated fatty acids production by solid-state fermentation on polyurethane foam by Mortierella alpina. Ferreira M; Fernandes H; Peres H; Oliva-Teles A; Belo I; Salgado JM Biotechnol Prog; 2021 May; 37(3):e3113. PubMed ID: 33342062 [TBL] [Abstract][Full Text] [Related]
35. Xanthan production on polyurethane foam and its enhancement by air pressure pulsation. Zhang ZG; Chen HZ Appl Biochem Biotechnol; 2010 Dec; 162(8):2244-58. PubMed ID: 20526822 [TBL] [Abstract][Full Text] [Related]
36. Rhamnolipid production by Pseudomonas aeruginosa engineered with the Vitreoscilla hemoglobin gene. Kahraman H; Erenler SO Prikl Biokhim Mikrobiol; 2012; 48(2):212-7. PubMed ID: 22586915 [TBL] [Abstract][Full Text] [Related]
37. Polyurethane foam as an inert carrier for the production of L(+)-lactic acid by Lactobacillus casei under solid-state fermentation. John RP; Nampoothiri KM; Pandey A Lett Appl Microbiol; 2007 Jun; 44(6):582-7. PubMed ID: 17576217 [TBL] [Abstract][Full Text] [Related]
38. Microbial rhamnolipid production: a critical re-evaluation of published data and suggested future publication criteria. Irorere VU; Tripathi L; Marchant R; McClean S; Banat IM Appl Microbiol Biotechnol; 2017 May; 101(10):3941-3951. PubMed ID: 28386631 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Müller MM; Hörmann B; Kugel M; Syldatk C; Hausmann R Appl Microbiol Biotechnol; 2011 Feb; 89(3):585-92. PubMed ID: 20890599 [TBL] [Abstract][Full Text] [Related]
40. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Cha M; Lee N; Kim M; Kim M; Lee S Bioresour Technol; 2008 May; 99(7):2192-9. PubMed ID: 17611103 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]