These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 31724076)
1. Automatic Annotation of Retinal Layers in Optical Coherence Tomography Images. Dodo BI; Li Y; Eltayef K; Liu X J Med Syst; 2019 Nov; 43(12):336. PubMed ID: 31724076 [TBL] [Abstract][Full Text] [Related]
2. Automatic Vessel Shade-Robust Segmentation of Retinal Layers in OCT Images. González-López A; Ortega M; Penedo MG; Charlón P Stud Health Technol Inform; 2014; 207():47-54. PubMed ID: 25488210 [TBL] [Abstract][Full Text] [Related]
3. Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. Yazdanpanah A; Hamarneh G; Smith BR; Sarunic MV IEEE Trans Med Imaging; 2011 Feb; 30(2):484-96. PubMed ID: 20952331 [TBL] [Abstract][Full Text] [Related]
4. Automatic Anisotropic Diffusion Filtering and Graph-search Segmentation of Macular Spectral-domain Optical Coherence Tomographic (SD-OCT) Images. Usha A; Shajil N; Sasikala M Curr Med Imaging Rev; 2019; 15(3):308-318. PubMed ID: 31989882 [TBL] [Abstract][Full Text] [Related]
5. Automated layer segmentation of optical coherence tomography images. Lu S; Cheung CY; Liu J; Lim JH; Leung CK; Wong TY IEEE Trans Biomed Eng; 2010 Oct; 57(10):2605-8. PubMed ID: 20595078 [TBL] [Abstract][Full Text] [Related]
6. Automated layer segmentation of macular OCT images via graph-based SLIC superpixels and manifold ranking approach. Gao Z; Bu W; Zheng Y; Wu X Comput Med Imaging Graph; 2017 Jan; 55():42-53. PubMed ID: 27614678 [TBL] [Abstract][Full Text] [Related]
7. Speckle Reduction in 3D Optical Coherence Tomography of Retina by A-Scan Reconstruction. Cheng J; Tao D; Quan Y; Wong DW; Cheung GC; Akiba M; Liu J IEEE Trans Med Imaging; 2016 Oct; 35(10):2270-2279. PubMed ID: 27116734 [TBL] [Abstract][Full Text] [Related]
8. Intra-retinal layer segmentation in optical coherence tomography images. Mishra A; Wong A; Bizheva K; Clausi DA Opt Express; 2009 Dec; 17(26):23719-28. PubMed ID: 20052083 [TBL] [Abstract][Full Text] [Related]
9. Automatic segmentation of layers in chorio-retinal complex using Graph-based method for ultra-speed 1.7 MHz wide field swept source FDML optical coherence tomography. Poddar R; Shukla V; Alam Z; Mohan M Med Biol Eng Comput; 2024 May; 62(5):1375-1393. PubMed ID: 38191981 [TBL] [Abstract][Full Text] [Related]
10. Fully Automated Segmentation of Fluid/Cyst Regions in Optical Coherence Tomography Images With Diabetic Macular Edema Using Neutrosophic Sets and Graph Algorithms. Rashno A; Koozekanani DD; Drayna PM; Nazari B; Sadri S; Rabbani H; Parhi KK IEEE Trans Biomed Eng; 2018 May; 65(5):989-1001. PubMed ID: 28783619 [TBL] [Abstract][Full Text] [Related]
11. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
12. Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint. Niu S; Chen Q; de Sisternes L; Rubin DL; Zhang W; Liu Q Comput Biol Med; 2014 Nov; 54():116-28. PubMed ID: 25240102 [TBL] [Abstract][Full Text] [Related]
13. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913 [TBL] [Abstract][Full Text] [Related]
14. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455 [TBL] [Abstract][Full Text] [Related]
15. Automated Layer Segmentation of Retinal Optical Coherence Tomography Images Using a Deep Feature Enhanced Structured Random Forests Classifier. Liu X; Fu T; Pan Z; Liu D; Hu W; Liu J; Zhang K IEEE J Biomed Health Inform; 2019 Jul; 23(4):1404-1416. PubMed ID: 30010602 [TBL] [Abstract][Full Text] [Related]
16. Statistical Models of Signal and Noise and Fundamental Limits of Segmentation Accuracy in Retinal Optical Coherence Tomography. Dubose TB; Cunefare D; Cole E; Milanfar P; Izatt JA; Farsiu S IEEE Trans Med Imaging; 2018 Sep; 37(9):1978-1988. PubMed ID: 29990154 [TBL] [Abstract][Full Text] [Related]
17. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images. Lee S; Lebed E; Sarunic MV; Beg MF IEEE Trans Biomed Eng; 2015 Feb; 62(2):609-17. PubMed ID: 25312906 [TBL] [Abstract][Full Text] [Related]
18. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
19. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Chiu SJ; Li XT; Nicholas P; Toth CA; Izatt JA; Farsiu S Opt Express; 2010 Aug; 18(18):19413-28. PubMed ID: 20940837 [TBL] [Abstract][Full Text] [Related]
20. Multiscale joint segmentation method for retinal optical coherence tomography images using a bidirectional wave algorithm and improved graph theory. Lou S; Chen X; Wang Y; Cai H; Chen S; Liu L Opt Express; 2023 Feb; 31(4):6862-6876. PubMed ID: 36823933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]