These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 31724084)
41. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient. Mondal N; Sukumar R PLoS One; 2016; 11(7):e0159691. PubMed ID: 27441689 [TBL] [Abstract][Full Text] [Related]
42. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Coppoletta M; Merriam KE; Collins BM Ecol Appl; 2016 Apr; 26(3):686-99. PubMed ID: 27411243 [TBL] [Abstract][Full Text] [Related]
43. Modelling the ecological vulnerability to forest fires in mediterranean ecosystems using geographic information technologies. Duguy B; Alloza JA; Baeza MJ; De la Riva J; Echeverría M; Ibarra P; Llovet J; Cabello FP; Rovira P; Vallejo RV Environ Manage; 2012 Dec; 50(6):1012-26. PubMed ID: 23052472 [TBL] [Abstract][Full Text] [Related]
44. Paleoecological and historical data as an important tool in ecosystem management. Słowiński M; Lamentowicz M; Łuców D; Barabach J; Brykała D; Tyszkowski S; Pieńczewska A; Śnieszko Z; Dietze E; Jażdżewski K; Obremska M; Ott F; Brauer A; Marcisz K J Environ Manage; 2019 Apr; 236():755-768. PubMed ID: 30776550 [TBL] [Abstract][Full Text] [Related]
45. Assessing the Effects of Fire Disturbances and Timber Management on Carbon Storage in the Greater Yellowstone Ecosystem. Zhao F; Healey SP; Huang C; McCarter JB; Garrard C; Goeking SA; Zhu Z Environ Manage; 2018 Oct; 62(4):766-776. PubMed ID: 29947968 [TBL] [Abstract][Full Text] [Related]
46. A spatio-temporal analysis of fire recurrence and extent for semi-arid savanna ecosystems in Southern Africa using moderate-resolution satellite imagery. Pricope NG; Binford MW J Environ Manage; 2012 Jun; 100():72-85. PubMed ID: 22366360 [TBL] [Abstract][Full Text] [Related]
47. Fire protection priorities in the oak forests of Iran with an emphasis on vertebrate habitat preservation. Sayahnia R; Ommi S; Khoshnamvand H; Salmanpour F; Sadeghi SMM; Ahmadzadeh F Sci Rep; 2024 Jul; 14(1):15624. PubMed ID: 38972910 [TBL] [Abstract][Full Text] [Related]
48. Using unplanned fires to help suppressing future large fires in Mediterranean forests. Regos A; Aquilué N; Retana J; De Cáceres M; Brotons L PLoS One; 2014; 9(4):e94906. PubMed ID: 24727853 [TBL] [Abstract][Full Text] [Related]
49. Restoration and fuel hazard reduction result in equivalent reductions in crown fire behavior in dry conifer forests. Ritter SM; Hoffman CM; Battaglia MA; Jain TB Ecol Appl; 2022 Oct; 32(7):e2682. PubMed ID: 35592904 [TBL] [Abstract][Full Text] [Related]
50. Temporal variability of forest fires in eastern Amazonia. Alencar A; Asner GP; Knapp D; Zarin D Ecol Appl; 2011 Oct; 21(7):2397-412. PubMed ID: 22073631 [TBL] [Abstract][Full Text] [Related]
51. Forest fire probability under ENSO conditions in a semi-arid region: a case study in Guanajuato. Farfán M; Dominguez C; Espinoza A; Jaramillo A; Alcántara C; Maldonado V; Tovar I; Flamenco A Environ Monit Assess; 2021 Oct; 193(10):684. PubMed ID: 34599681 [TBL] [Abstract][Full Text] [Related]
52. Recent land-use and land-cover changes and its driving factors in a fire-prone area of southwestern Turkey. Viedma O; Moreno JM; Güngöroglu C; Cosgun U; Kavgacı A J Environ Manage; 2017 Jul; 197():719-731. PubMed ID: 28448809 [TBL] [Abstract][Full Text] [Related]
53. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure. Miquelajauregui Y; Cumming SG; Gauthier S PLoS One; 2016; 11(2):e0150073. PubMed ID: 26919456 [TBL] [Abstract][Full Text] [Related]
54. Fortifying the forest: thinning and burning increase resistance to a bark beetle outbreak and promote forest resilience. Hood SM; Baker S; Sala A Ecol Appl; 2016 Oct; 26(7):1984-2000. PubMed ID: 27755724 [TBL] [Abstract][Full Text] [Related]
55. Identification and characterization of spatio-temporal hotspots of forest fires in South Asia. Reddy CS; Bird NG; Sreelakshmi S; Manikandan TM; Asra M; Krishna PH; Jha CS; Rao PVN; Diwakar PG Environ Monit Assess; 2020 Jan; 191(Suppl 3):791. PubMed ID: 31989284 [TBL] [Abstract][Full Text] [Related]
56. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel. Levin N; Tessler N; Smith A; McAlpine C Environ Manage; 2016 Sep; 58(3):549-62. PubMed ID: 27246121 [TBL] [Abstract][Full Text] [Related]
57. Non fire-adapted dry forest of Northwestern Madagascar: Escalating and devastating trends revealed by Landsat timeseries and GEDI lidar data. Percival JEH; Sato H; Razanaparany TP; Rakotomamonjy AH; Razafiarison ZL; Kitajima K PLoS One; 2024; 19(2):e0290203. PubMed ID: 38377075 [TBL] [Abstract][Full Text] [Related]
58. The largest forest fires in Portugal: the constraints of burned area size on the comprehension of fire severity. Tedim F; Remelgado R; Martins J; Carvalho S J Environ Biol; 2015 Jan; 36 Spec No():133-43. PubMed ID: 26591893 [TBL] [Abstract][Full Text] [Related]
59. Temporal characterisation of soil-plant natural recovery related to fire severity in burned Pinus halepensis Mill. forests. Moya D; González-De Vega S; García-Orenes F; Morugán-Coronado A; Arcenegui V; Mataix-Solera J; Lucas-Borja ME; De Las Heras J Sci Total Environ; 2018 Nov; 640-641():42-51. PubMed ID: 29852446 [TBL] [Abstract][Full Text] [Related]
60. Assessing fire hazard potential and its main drivers in Mazandaran province, Iran: a data-driven approach. Adab H; Atabati A; Oliveira S; Moghaddam Gheshlagh A Environ Monit Assess; 2018 Oct; 190(11):670. PubMed ID: 30357475 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]