These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 31724293)

  • 21. Effect of regional climate warming on the phenology of butterflies in boreal forests in Manitoba, Canada.
    Westwood AR; Blair D
    Environ Entomol; 2010 Aug; 39(4):1122-33. PubMed ID: 22127162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Climate change effects on animal ecology: butterflies and moths as a case study.
    Hill GM; Kawahara AY; Daniels JC; Bateman CC; Scheffers BR
    Biol Rev Camb Philos Soc; 2021 Oct; 96(5):2113-2126. PubMed ID: 34056827
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ecological and methodological drivers of species' distribution and phenology responses to climate change.
    Brown CJ; O'Connor MI; Poloczanska ES; Schoeman DS; Buckley LB; Burrows MT; Duarte CM; Halpern BS; Pandolfi JM; Parmesan C; Richardson AJ
    Glob Chang Biol; 2016 Apr; 22(4):1548-60. PubMed ID: 26661135
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CLIMBER: Climatic niche characteristics of the butterflies in Europe.
    Schweiger O; Harpke A; Wiemers M; Settele J
    Zookeys; 2014; (367):65-84. PubMed ID: 24478578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data.
    Larsen EA; Belitz MW; Guralnick RP; Ries L
    Sci Rep; 2022 Aug; 12(1):13370. PubMed ID: 35927297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local climate change velocities and evolutionary history explain multidirectional range shifts in a North American butterfly assemblage.
    da Silva CRB; Diamond SE
    J Anim Ecol; 2024 Aug; 93(8):1160-1171. PubMed ID: 38922857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.
    Jones NT; Gilbert B
    J Anim Ecol; 2016 Mar; 85(2):559-69. PubMed ID: 26590065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Climatic warming increases voltinism in European butterflies and moths.
    Altermatt F
    Proc Biol Sci; 2010 Apr; 277(1685):1281-7. PubMed ID: 20031988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ecotypic differentiation matters for latitudinal variation in energy metabolism and flight performance in a butterfly under climate change.
    Van Dyck H; Holveck MJ
    Sci Rep; 2016 Nov; 6():36941. PubMed ID: 27845372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Weather anomalies more important than climate means in driving insect phenology.
    Guralnick RP; Campbell LP; Belitz MW
    Commun Biol; 2023 May; 6(1):490. PubMed ID: 37147472
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Field transplants reveal summer constraints on a butterfly range expansion.
    Crozier LG
    Oecologia; 2004 Sep; 141(1):148-57. PubMed ID: 15278427
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Species' traits predict phenological responses to climate change in butterflies.
    Diamond SE; Frame AM; Martin RA; Buckley LB
    Ecology; 2011 May; 92(5):1005-12. PubMed ID: 21661561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?
    McDermott Long O; Warren R; Price J; Brereton TM; Botham MS; Franco AM
    J Anim Ecol; 2017 Jan; 86(1):108-116. PubMed ID: 27796048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Morphological constraints on changing avian migration phenology.
    Møller AP; Rubolini D; Saino N
    J Evol Biol; 2017 Jun; 30(6):1177-1184. PubMed ID: 28386940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Climate change, phenology, and butterfly host plant utilization.
    Navarro-Cano JA; Karlsson B; Posledovich D; Toftegaard T; Wiklund C; Ehrlén J; Gotthard K
    Ambio; 2015 Jan; 44 Suppl 1(Suppl 1):S78-88. PubMed ID: 25576283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low winter precipitation, but not warm autumns and springs, threatens mountain butterflies in middle-high mountains.
    Konvicka M; Kuras T; Liparova J; Slezak V; Horázná D; Klečka J; Kleckova I
    PeerJ; 2021; 9():e12021. PubMed ID: 34532158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes.
    Jin H; Jönsson AM; Olsson C; Lindström J; Jönsson P; Eklundh L
    Int J Biometeorol; 2019 Jun; 63(6):763-775. PubMed ID: 30805728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progress towards an interdisciplinary science of plant phenology: building predictions across space, time and species diversity.
    Wolkovich EM; Cook BI; Davies TJ
    New Phytol; 2014 Mar; 201(4):1156-62. PubMed ID: 24649487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climate change drives mountain butterflies towards the summits.
    Rödder D; Schmitt T; Gros P; Ulrich W; Habel JC
    Sci Rep; 2021 Jul; 11(1):14382. PubMed ID: 34257364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Climate conditions and resource availability drive return elevational migrations in a single-brooded insect.
    Gutiérrez D; Wilson RJ
    Oecologia; 2014 Jul; 175(3):861-73. PubMed ID: 24817198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.