These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
395 related articles for article (PubMed ID: 31724305)
21. The Tumor Microenvironment: An Introduction to the Development of Microfluidic Devices. Kundu B; Caballero D; Abreu CM; Reis RL; Kundu SC Adv Exp Med Biol; 2022; 1379():115-138. PubMed ID: 35760990 [TBL] [Abstract][Full Text] [Related]
22. Skin Diseases Modeling using Combined Tissue Engineering and Microfluidic Technologies. Mohammadi MH; Heidary Araghi B; Beydaghi V; Geraili A; Moradi F; Jafari P; Janmaleki M; Valente KP; Akbari M; Sanati-Nezhad A Adv Healthc Mater; 2016 Oct; 5(19):2459-2480. PubMed ID: 27548388 [TBL] [Abstract][Full Text] [Related]
23. Advances in Integration, Wearable Applications, and Artificial Intelligence of Biomedical Microfluidics Systems. Ma X; Guo G; Wu X; Wu Q; Liu F; Zhang H; Shi N; Guan Y Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241596 [TBL] [Abstract][Full Text] [Related]
24. Recent research advances of the biomimetic tumor microenvironment and regulatory factors on microfluidic devices: A systematic review. Xu H; Cheng C; Le W Electrophoresis; 2022 Apr; 43(7-8):839-847. PubMed ID: 35179796 [TBL] [Abstract][Full Text] [Related]
25. Biomaterials and Microfluidics for Drug Discovery and Development. Carvalho MR; Truckenmuller R; Reis RL; Oliveira JM Adv Exp Med Biol; 2020; 1230():121-135. PubMed ID: 32285368 [TBL] [Abstract][Full Text] [Related]
26. Organ-on-Chip platforms to study tumor evolution and chemosensitivity. Dsouza VL; Kuthethur R; Kabekkodu SP; Chakrabarty S Biochim Biophys Acta Rev Cancer; 2022 May; 1877(3):188717. PubMed ID: 35304293 [TBL] [Abstract][Full Text] [Related]
27. Bioinspired Engineering of Organ-on-Chip Devices. Wang L; Li Z; Xu C; Qin J Adv Exp Med Biol; 2019; 1174():401-440. PubMed ID: 31713207 [TBL] [Abstract][Full Text] [Related]
28. Biomimetic Model of Tumor Microenvironment on Microfluidic Platform. Chung M; Ahn J; Son K; Kim S; Jeon NL Adv Healthc Mater; 2017 Aug; 6(15):. PubMed ID: 28544639 [TBL] [Abstract][Full Text] [Related]
29. Tumor-on-a-chip: from bioinspired design to biomedical application. Liu X; Fang J; Huang S; Wu X; Xie X; Wang J; Liu F; Zhang M; Peng Z; Hu N Microsyst Nanoeng; 2021; 7():50. PubMed ID: 34567763 [TBL] [Abstract][Full Text] [Related]
30. Dynamic Culture Systems and 3D Interfaces Models for Cancer Drugs Testing. Fernandes DC; Canadas RF; Reis RL; Oliveira JM Adv Exp Med Biol; 2020; 1230():137-159. PubMed ID: 32285369 [TBL] [Abstract][Full Text] [Related]
31. Integrated analysis of the tumor microenvironment using a reconfigurable microfluidic cell culture platform. Sethakorn N; Heninger E; Breneman MT; Recchia E; Ding AB; Jarrard DF; Hematti P; Beebe DJ; Kosoff D FASEB J; 2022 Oct; 36(10):e22540. PubMed ID: 36083096 [TBL] [Abstract][Full Text] [Related]
33. Targeting Tumor Microenvironment for Cancer Therapy. Roma-Rodrigues C; Mendes R; Baptista PV; Fernandes AR Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781344 [TBL] [Abstract][Full Text] [Related]
34. Microfluidic modeling of the biophysical microenvironment in tumor cell invasion. Huang YL; Segall JE; Wu M Lab Chip; 2017 Sep; 17(19):3221-3233. PubMed ID: 28805874 [TBL] [Abstract][Full Text] [Related]
35. Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient. Caballero D; Kaushik S; Correlo VM; Oliveira JM; Reis RL; Kundu SC Biomaterials; 2017 Dec; 149():98-115. PubMed ID: 29024838 [TBL] [Abstract][Full Text] [Related]
36. Use and application of organ-on-a-chip platforms in cancer research. Yu Y; Zhou T; Cao L J Cell Commun Signal; 2023 Dec; 17(4):1163-1179. PubMed ID: 38032444 [TBL] [Abstract][Full Text] [Related]
37. Microfluidic Co-Culture Models for Dissecting the Immune Response in in vitro Tumor Microenvironments. De Ninno A; Bertani FR; Gerardino A; Schiavoni G; Musella M; Galassi C; Mattei F; Sistigu A; Businaro L J Vis Exp; 2021 Apr; (170):. PubMed ID: 33999026 [TBL] [Abstract][Full Text] [Related]
38. Development of In Vitro Co-Culture Model in Anti-Cancer Drug Development Cascade. Xu R; Richards FM Comb Chem High Throughput Screen; 2017; 20(5):451-457. PubMed ID: 28155598 [TBL] [Abstract][Full Text] [Related]
39. In Vitro Tumor Models on Chip and Integrated Microphysiological Analysis Platform (MAP) for Life Sciences and High-Throughput Drug Screening. Ngo H; Amartumur S; Tran VTA; Tran M; Diep YN; Cho H; Lee LP Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36831997 [TBL] [Abstract][Full Text] [Related]
40. Development of a biomimetic liver tumor-on-a-chip model based on decellularized liver matrix for toxicity testing. Lu S; Cuzzucoli F; Jiang J; Liang LG; Wang Y; Kong M; Zhao X; Cui W; Li J; Wang S Lab Chip; 2018 Nov; 18(22):3379-3392. PubMed ID: 30298144 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]