These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 31724319)
21. Fe₃O₄@Ag magnetic nanoparticles for microRNA capture and duplex-specific nuclease signal amplification based SERS detection in cancer cells. Pang Y; Wang C; Wang J; Sun Z; Xiao R; Wang S Biosens Bioelectron; 2016 May; 79():574-80. PubMed ID: 26749099 [TBL] [Abstract][Full Text] [Related]
22. Target-Induced Core-Satellite Nanostructure Assembly Strategy for Dual-Signal-On Fluorescence Imaging and Raman Quantification of Intracellular MicroRNA Guided Photothermal Therapy. Li N; Shen F; Cai Z; Pan W; Yin Y; Deng X; Zhang X; Machuki JO; Yu Y; Yang D; Yang Y; Guan M; Gao F Small; 2020 Dec; 16(49):e2005511. PubMed ID: 33179397 [TBL] [Abstract][Full Text] [Related]
23. SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA. Novara C; Chiadò A; Paccotti N; Catuogno S; Esposito CL; Condorelli G; De Franciscis V; Geobaldo F; Rivolo P; Giorgis F Faraday Discuss; 2017 Dec; 205():271-289. PubMed ID: 28884170 [TBL] [Abstract][Full Text] [Related]
24. DNA-Driven Two-Layer Core-Satellite Gold Nanostructures for Ultrasensitive MicroRNA Detection in Living Cells. Meng D; Ma W; Wu X; Xu C; Kuang H Small; 2020 Jun; 16(23):e2000003. PubMed ID: 32374494 [TBL] [Abstract][Full Text] [Related]
25. Coupling hybridization chain reaction with catalytic hairpin assembly enables non-enzymatic and sensitive fluorescent detection of microRNA cancer biomarkers. Wei Y; Zhou W; Li X; Chai Y; Yuan R; Xiang Y Biosens Bioelectron; 2016 Mar; 77():416-20. PubMed ID: 26439017 [TBL] [Abstract][Full Text] [Related]
26. Discrimination of single nucleotide mismatches using a scalable, flexible, and transparent three-dimensional nanostructure-based plasmonic miRNA sensor with high sensitivity. Na HK; Wi JS; Son HY; Ok JG; Huh YM; Lee TG Biosens Bioelectron; 2018 Aug; 113():39-45. PubMed ID: 29727750 [TBL] [Abstract][Full Text] [Related]
27. Simultaneous Surface-Enhanced Raman Spectroscopy Detection of Multiplexed MicroRNA Biomarkers. Zhou W; Tian YF; Yin BC; Ye BC Anal Chem; 2017 Jun; 89(11):6120-6128. PubMed ID: 28488851 [TBL] [Abstract][Full Text] [Related]
28. Quantitative and specific detection of cancer-related microRNAs in living cells using surface-enhanced Raman scattering imaging based on hairpin DNA-functionalized gold nanocages. Wang Z; Xue J; Bi C; Xin H; Wang Y; Cao X Analyst; 2019 Dec; 144(24):7250-7262. PubMed ID: 31687670 [TBL] [Abstract][Full Text] [Related]
29. Direct and Label-Free Detection of MicroRNA Cancer Biomarkers using SERS-Based Plasmonic Coupling Interference (PCI) Nanoprobes. Wang HN; Crawford BM; Norton SJ; Vo-Dinh T J Phys Chem B; 2019 Dec; 123(48):10245-10251. PubMed ID: 31710234 [TBL] [Abstract][Full Text] [Related]
30. Dual-Enhanced Raman Scattering-Based Characterization of Stem Cell Differentiation Using Graphene-Plasmonic Hybrid Nanoarray. Yang L; Lee JH; Rathnam C; Hou Y; Choi JW; Lee KB Nano Lett; 2019 Nov; 19(11):8138-8148. PubMed ID: 31663759 [TBL] [Abstract][Full Text] [Related]
31. Recent progress of SERS optical nanosensors for miRNA analysis. Sun Y; Shi L; Mi L; Guo R; Li T J Mater Chem B; 2020 Jun; 8(24):5178-5183. PubMed ID: 32432312 [TBL] [Abstract][Full Text] [Related]
32. Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures. Wu D; Chen Y; Hou S; Fang W; Duan H Chembiochem; 2019 Oct; 20(19):2432-2441. PubMed ID: 30957950 [TBL] [Abstract][Full Text] [Related]
33. Plasmonic Heterodimers with Binding Site-Dependent Hot Spot for Surface-Enhanced Raman Scattering. Tian Y; Shuai Z; Shen J; Zhang L; Chen S; Song C; Zhao B; Fan Q; Wang L Small; 2018 Jun; 14(24):e1800669. PubMed ID: 29736956 [TBL] [Abstract][Full Text] [Related]
34. Plasmonic properties of regiospecific core-satellite assemblies of gold nanostars and nanospheres. Indrasekara AS; Thomas R; Fabris L Phys Chem Chem Phys; 2015 Sep; 17(33):21133-42. PubMed ID: 25380028 [TBL] [Abstract][Full Text] [Related]
35. Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Yang J; Shen D; Zhou L; Li W; Fan J; El-Toni AM; Zhang WX; Zhang F; Zhao D Adv Healthc Mater; 2014 Oct; 3(10):1620-8. PubMed ID: 24665061 [TBL] [Abstract][Full Text] [Related]
36. Sensitive Glycoprotein Sandwich Assays by the Synergistic Effect of In Situ Generation of Raman Probes and Plasmonic Coupling of Ag Core-Au Satellite Nanostructures. Bi X; Li X; Chen D; Du X ACS Appl Mater Interfaces; 2016 May; 8(17):10683-9. PubMed ID: 27064515 [TBL] [Abstract][Full Text] [Related]
37. SERS-Microfluidic Approach for the Quantitative Detection of miRNA Using DNAzyme-Mediated Reciprocal Signal Amplification. Ma L; Ye S; Wang X; Zhang J ACS Sens; 2021 Mar; 6(3):1392-1399. PubMed ID: 33591724 [TBL] [Abstract][Full Text] [Related]
38. Surface-Enhanced Raman Spectroscopy for Chen J; Wang JF; Wu XZ; Rong Z; Dong PT; Xiao R J Nanosci Nanotechnol; 2018 Jun; 18(6):3825-3831. PubMed ID: 29442715 [TBL] [Abstract][Full Text] [Related]
39. Dual cycle amplification and dual signal enhancement assisted sensitive SERS assay of MicroRNA. Wu Y; Li Y; Han H; Zhao C; Zhang X Anal Biochem; 2019 Jan; 564-565():16-20. PubMed ID: 30312618 [TBL] [Abstract][Full Text] [Related]
40. Sensitive and Direct DNA Mutation Detection by Surface-Enhanced Raman Spectroscopy Using Rational Designed and Tunable Plasmonic Nanostructures. Liu Y; Lyu N; Rajendran VK; Piper J; Rodger A; Wang Y Anal Chem; 2020 Apr; 92(8):5708-5716. PubMed ID: 32223184 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]